

AN INTEGRATED APPROACH FOR SOFTWARE DESIGN
CHECKING USING DESIGN RATIONALE

JANET E. BURGE, DAVID C. BROWN
AI in Design Research Group
Department of Computer Science
WPI, 100 Institute Road
Worcester, MA 01609, USA

Abstract. Design Rationale (DR), the reasons behind decisions made
while designing, offers a richer view of both the product and the
decision-making process by providing the designer’s intent behind the
decisions. DR is also valuable for checking to ensure that the intent
was adhered to throughout the design, as well as pointing out any
unresolved (or undocumented) issues that remain open. While there is
little doubt of the value of DR, it is typically not captured during
design. SEURAT (Software Engineering Using RATionale) is a
system we have developed to explore uses of design rationale. It
supports both the display of and inferencing over the rationale to point
out any unresolved issues or inconsistencies. SEURAT is tightly
integrated with a software development environment so that rationale
capture and use can become integrated into the software development
process.

1. Introduction

For a number of years, members of the Artificial Intelligence (AI) in Design
community have studied Design Rationale (DR), the reasons behind
decisions made while designing. DR offers a rich view of both the product
and the decision-making process by providing the designer’s intent behind
the decisions. DR is also valuable for checking to ensure that the intent was
adhered to throughout the design as well as pointing out any unresolved (or
undocumented) issues that remain open.

An area where rationale for past decisions is especially useful is during
software maintenance. One reason for this is that the software lifecycle is a
long one. Large projects may take years to complete and spend even more

2 J. E. BURGE AND D.C. BROWN

time out in the field being used (and maintained). Maintenance costs can be
more than 40 percent of the cost of developing the software in the first place
(Brooks, 1995). The panic over the “Y2K bug” highlighted the fact that
software systems often live on much longer than the original developers
intended. Also, the combination of a long life cycle and the typically high
personnel turnover in the software industry increases the probability that the
original designer is unlikely to be available for consultation when problems
arise.

All these reasons argue for as much support as can be provided during
maintenance. Semi-automatic maintenance support systems, such as Reiss's
constraint-based system (Reiss, 2002), that work on the code, abstracted
code, design artifacts, or meta-data, assist with maintaining consistency
between artifacts. Design Rationale, however, assists with maintaining
consistency in designer reasoning and intent.

1.1 DIFFICULTIES WITH RATIONALE

While rationale has great potential value, rationale is not in widespread use.
One difficulty, despite much research, is the capture of design rationale.
Recording all decisions made, as well as those rejected, can be time
consuming and expensive.

Documenting the decisions can impede the design process if decision
recording is viewed as a separate process from constructing the artifact
(Fischer, et al., 1995). Designers are reluctant to take the time to document
the decisions they did not take, or took and then rejected (Conklin and
Burgess-Yakemovic, 1995). A real danger is the risk that the overhead of
capturing the rationale may impact the project schedule enough to make the
difference between a project that meets its deadlines and is completed,
versus one where the failure to meet deadlines results in cancellation
(Grudin, 1995). One way to mitigate these risks is to provide tools for
rationale capture and use that are tightly integrated with those used during
the designing process so that capturing and using the rationale becomes part
of the standard process, not an extra task that needs to be performed with its
own set of tools and standards.

1.2 USES OF RATIONALE

The key to making the capture worthwhile, as well as providing
requirements for DR representation, is the use for, and usefulness of, the
rationale. In this paper, we describe the SEURAT (Software Engineering
Using RATionale) system, which integrates tools for rationale capture,
visualization, and use into a standard software engineering environment.
SEURAT addresses a number of uses for rationale:

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 3

• Design verification – using rationale to verify that the design meets
the requirements and the designer’s intent.

• Design evaluation – using rationale to evaluate (partial) designs and
design choices relative to one another to detect inconsistencies.

• Design maintenance – using rationale to locate sources of design
problems, to indicate where changes need to be made in order to
modify the design, and to ensure that rejected options are not
inadvertently re-implemented.

• Design assistance – using rationale to clarify discussion, check
impact of design modifications, and perform consistency checking.

This paper is structured as follows: in section 2, we describe related work. In
section 3, we describe the overall approach. Section 4 describes the rationale
representation developed for SEURAT and section 5 presents the Argument
Ontology, a key component of the rationale representation. Section 6
describes inferences to be performed over the rationale and section 7 gives
the conclusions and outlines future work.

2. Related Work

Work on design rationale has focused on three main issues: capture,
representation, and use. While SEURAT supports capture by providing the
capability to enter the rationale, capture is not a main focus of the work. The
related work on representation is presented as part of the representation
discussion in section 4. In this section, we describe related work on rationale
use.

2.1 RATIONALE USE

There are a number of systems that focused on uses for rationale for both
engineering and software design. JANUS (Fischer, et al., 1995) critiques the
design and provides the designers with rationale to support the criticism
SYBIL (Lee, 1990) and InfoRat (Burge and Brown, 2000) both check that
the rationale behind each decision is complete. C-Re-CS (Klein, 1997)
performs consistency checking on requirements and recommends a
resolution strategy for detected exceptions.

Co-MoKit (Dellen, et al., 1996) uses a software process model to obtain
design decisions and causal dependencies between them. WinWin (Boehm
and Bose, 1994) aims at coordinating decision-making activities made by
various “stakeholders” in the software development process. Bose (Bose,
1995) defined an ontology for the decision rationale needed to maintain the
decision structure. The goal was to model the decision rationale in order to
support decision maintenance by allowing the system to determine the
impact of a change and propagate modification effects. Chung, et al. (2000)

4 J. E. BURGE AND D.C. BROWN

developed an NFR Framework that uses non-functional requirements to
drive the software design process, producing the design and its rationale.

2.2 EVALUATING USEFULNESS

While the usefulness of rationale has not been studied in as much detail
as the capture and representation, there have been some experiments
performed. Field trials performed using itIBIS and gIBIS (Conklin and
Burgess-Yakemovic, 1995) indicated that capturing rationale was found to
be useful during both requirements analysis and design, and that the process
also helped with team communication by making meetings more productive.
Karsenty (1996) studied how DR could be used to evaluate a design. In this
study, 50% of the designers’ questions were about the rationale behind the
design and 41% of those questions were answered using the recorded
rationale.

3. Approach

For the SEURAT system we have chosen to focus our efforts on software
engineering and concentrate on how rationale could be used during software
maintenance, one of the most difficult and expensive phases of the software
life cycle. Our goal is to create a system that can be tightly integrated with
existing development tools so that rationale capture and use can become a
part of the development process, not something that is done after the fact.

We are currently building the SEURAT system as a plug-in to the Eclipse
Tool Platform (www.eclipse.org) so that it can be tightly integrated with a
Java IDE (Interactive Development Environment) and other design tools that
plug into Eclipse. This allows us to connect the rationale with the code and
design artifacts that it explains. It ensures that the software maintainers are
aware of and use the rationale.

SEURAT will present the relevant DR when required and allow entry of
new rationale for the modifications. The new DR will then be verified
against the existing DR to check for inconsistencies. There are several types
of checks that should be made: structural inferences to ensure that the
rationale is complete, evaluation, to ensure that it is based on well-founded
arguments, and comparison to rationale collected previously for similar
modifications to see if the same reasoning was used. In the latter, the
previous rationale could be used as a guide in determining the rationale for
the new modification.

Figure 1 shows SEURAT as part of the Eclipse Java IDE. SEURAT
participates in the development environment in three ways: a Rationale
Explorer (upper left pane) that shows a hierarchical view of the rationale and
allows display and editing of the rationale; a Rationale Task List (lower right
pane), that shows a list of errors and warnings about the rationale; and

http://www.eclipse.org/

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 5

Rationale Indicators that appear on the Java Package Explorer (lower left
pane) and in the Java Editor (upper right pane) to show where rationale is
available for a specific Java element. The examples in this paper come from
a meeting scheduling system. Note that the screenshots are in color, making
the icons much easier to distinguish than when reproduced in black and
white.

The software developer enters the rationale to be stored in SEURAT
while the system the rationale describes is being developed. SEURAT
supports the entry by providing rationale entry screens for each type of
rationale element.

Figure 1. SEURAT and Eclipse

4. Representation

A DR representation needs to be formalized and well structured, as opposed
to just free text, so that computer-based checking and inferences are
possible. We have generated a rationale representation, called RATSpeak,
and have chosen to use a semi-structured argumentation format because we
feel that argumentation is the best means for expressing the advantages and
disadvantages of the different design options considered. Argumentation
formats date back to Toulmin’s representation (Toulmin, 1958) of datums,
claims, warrants, backings and rebuttals. This is the origin of most

6 J. E. BURGE AND D.C. BROWN

argumentation representations. More recent argumentation formats include
Questions, Options, and Criteria (QOC) (MacLean, et al., 1995), Issue
Based Information System (IBIS) (Conklin and Burgess-Yakemovic, 1995),
and Decision Representation Language (DRL) (Lee, 1991). Each
argumentation format has its own set of terms but the basic goal is to
represent the decisions made, the possible alternatives for each decision, and
the arguments for and against each alternative.

Argumentation has been used in rationale representations that were
created specifically for software design. Potts and Bruns (1988) created a
model of generic elements in software design rationale that was then
extended by Lee (1991) in creating DRL, the language used in SIBYL.
DRIM (Design Recommendation and Intent Model) was used in a system to
augment design patterns with design rationale (Peña-Mora and Vadhavkar,
1996). This system is used to select design patterns based on the designers
intent and other constraints.

We chose to base RATSpeak on DRL because DRL appeared to be the
most comprehensive of the rationale languages. Even so, it was necessary to
make some changes because DRL did not provide a sufficiently explicit
representation of some types of argumentation (such as indicating if an
argument was for or against an alternative).

Figure 2 shows the argumentation structure used in RATSpeak. The
alternatives for each decision problem can be argued by their relationships to
requirements, their relationships to other alternatives, and by assumptions or
claims that support or deny the alternatives. The diagram also shows how
decisions can be subdivided into sub-decisions and how selecting an
alternative can result in additional decisions being needed.

Figure 2. RATSpeak Argumentation Structure

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 7

RATSpeak uses the following elements as part of the rationale:

• Requirements – these are the requirements, both functional and
non-functional. These can either be represented explicitly in the
rationale or be pointers to requirements stored in a requirements
document or database. For the purposes of our examples, we will
show them as part of the rationale. Requirements serve two
purposes in RATSpeak, one is as the basis of arguments for and
against alternatives. This allows RATSpeak to capture cases
where an alternative supports or violates a requirement. The other
purpose is so that the rationale for the requirements themselves
can be captured.

• Decision Problems – these are the decisions that must be made as
part of the development process. They are expressed in the form
of questions.

• Questions – these are questions that need to be answered before
the answer to the decision problem can be defined. The question
can include the procedures or programs that need to be run or
simple requests for information. While questions are not a
standard argumentation concept, they can augment the
argumentation by specifying the source of the information used
to make the decisions, which is useful during software
maintenance.

• Alternatives – these are alternative solutions to the decision
problems. Each alternative will have a status that indicates if it is
accepted, rejected, or pending.

• Arguments – these are the arguments for and against the proposed
alternatives. They can either contain requirements (i.e., an
alternative is good or bad because of its relationship to a
requirement), claims about the alternative, assumptions that are
reasons for or against choosing an alternative, or relationships
between alternatives (indicating dependencies or conflicts). Each
argument is given an amount (how much the argument applies to
the alternative, i.e., how flexible, how expensive) and an
importance (how important the argument is to the overall system
or to the specific decision).

• Claims – these are reasons why an alternative is good or bad.
Each claim maps to an entry in an Argument Ontology of
common arguments for and against software design decisions.
Each claim also indicates what direction it is in for that argument.
For example, a claim may state that a choice is NOT safe or that
an alternative IS flexible. This allows claims to be stated as either

8 J. E. BURGE AND D.C. BROWN

positive or negative assertions. Claims also contain an
importance, which can be inherited or overridden by the
arguments referencing the claim.

• Assumptions – these are similar to claims except that it is not
known if they are always true. Assumptions do not map to items
in the Argument Ontology.

• Argument Ontology – this is a hierarchy of common argument
types that serve as types of claims that can be used in the system.
These are used to provide the common vocabulary required for
inferencing. Each ontology entry contains an importance that can
be overridden by claims that reference it.

• Background Knowledge – this contains Tradeoffs and Co-
Occurrence Relationships that give relationships between
different arguments in the Argument Ontology. This is not
considered part of the argumentation but is used to check the
rationale for any violations of these relationships.

Figure 3 shows the relationships between the different rationale entities.

requires-answer to

is-argued-by

specified-in

is-argued-by

requires

is-about

is-alternative-for

Alternative

sub-decision Decision
Problem

Argument

sub-requirement

Requirement

is-reason-for

Claim Assumption

is-reason-for

Question

Argument
Ontology

Background Knowledge

specify
relationships

between Co-Occurrence
Relationships

Tradeoffs

requires-answer to

Figure 3. Relationships Between Rationale Entities

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 9

5. Argument Ontology

One key element in the RATSpeak representation is the Argument Ontology.
Our work on InfoRat showed the importance of providing a common
vocabulary to support inferencing over the content of the rationale as well as
over its structure. To support this, we have developed an ontology of reasons
for choosing one design alternative over another. This ontology forms a
hierarchy of terms with abstract reasons at the root and increasingly detailed
reasons towards the leaves.

RATSpeak provides the ability to express several different types of
arguments for and against alternatives. One type of argument is if an
alternative satisfies or violates a requirement. Other arguments refer to
assumptions made or dependencies between alternatives. Another type of
argument involves claims that an alternative supports or denies a Non-
Functional Requirement (NFR). These NFRs, also known as “ilities”
(Fillman, 1998) or quality requirements, refer to overall qualities of the
resulting system, as opposed to functional requirements, which refer to
specific functionality. As we describe in (Burge and Brown, 2002), the
distinction between functional and non-functional is often a matter of
context. RATSpeak also allows NFRs to be represented as explicit
requirements.

There have been many ways that NFRs have been organized. CMU’s
Quality Measures Taxonomy (SEI, 2000) organizes quality measures into
Needs Satisfaction Measures, Performance Measures, Maintenance
Measures, Adaptive Measures, and Organizational Measures. Bruegge and
Dutoit (2000) break a set of design goals into five groups: performance,
dependability, cost, maintenance, and end user criteria. Chung, et al. (2000)
provides an unordered list of NFRs as well as specific criteria for
performance and auditing NFRs.

For the RATSpeak argument ontology, we took a bottom-up approach by
looking at what characteristics a system could have that would support the
different types of software qualities. This involved reviewing literature on
the various quality categories to look for how a software system might
choose to address these qualities. For example, one quality attribute that is a
factor in design decisions is scalability. We looked to see what might
contribute toward scalability in a software design and added these attributes
to the ontology. For example, one way to increase scalability is to minimize
the number of connections a system must set up, another is to avoid using
fixed data sizes that may limit the capacity of the system. Our aim was to go
beyond the idea of design goals or quality measures to look at how these
qualities might be achieved by a software system.

In maintenance, the maintainers are more likely to be looking at the
lower-level decisions and will need specific reasons why these decisions

10 J. E. BURGE AND D.C. BROWN

contribute to a desired quality of the overall system. It is probable that
decisions made at the implementation level are likely to correspond to
detailed reasons in the ontology, while higher level decisions are more likely
to use reasons at the more abstract levels.

After determining a list of detailed reasons for choosing one alternative
over another, an Affinity Diagram (Jiro, 2000) was used to cluster similar
reasons into categories. These categories were then combined again. The
more abstract levels of the hierarchy were based on a combination of the
NFR organization schemes listed earlier (the CMU taxonomy as well as
Bruegge and Dutoit’s design goals). Also, NFRs from the Chung list were
used to fill in gaps in the ontology.

Figure 4 shows the first two levels of the Argument Ontology displayed
in SEURAT.

Figure 4. Top Levels of Argument Ontology

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 11

Each of these criteria then have sub-criteria at increasingly more detailed
levels. As an example, Figure 5 shows the sub-criteria for Usability as
displayed in SEURAT. The ontology terms are worded in terms of
arguments: i.e., <alternative> is a good choice because it <ontology entry >,
where ontology entry starts with a verb. The SEURAT system has been
designed so that the user can easily extend this ontology to incorporate
additional arguments that may be missing. With use, the ontology will
continue to be augmented and will become more complete over time. It is
possible to add deeper levels to the hierarchy but that will make it more time
consuming for the developer to find the appropriate item when adding
rationale.

Figure 5. Sub-Criteria for Usability

12 J. E. BURGE AND D.C. BROWN

Similar hierarchies have been developed for the other categories in Figure
4. One thing to note is that it is not a strict hierarchy―there are many cases
where items contributing toward one quality also apply to another. One
example of this is the strong relationship between scalability and
performance. Throughput and memory use, while primarily thought of as
performance aspects, also impact the scalability of the system. In this case,
and others that are similar, items will belong to more than one category.

The argument ontology also includes a default importance for each item.
These are present so that SEURAT users can specify this information for a
particular system. This is used in weighing the different arguments during
inferencing. The importance can be overridden for each claim or argument
but is stored with the ontology to allow this information to be global if
desired.

Other relationships that need to be captured are tradeoffs and co-
occurrences. These are cases where two items in the ontology often either
oppose each other in arguments or support each other in arguments. For
example, avoiding variable re-use makes it easier to verify the software is
correct but also means the program may take more memory. The user can
represent this, and similar tradeoffs, as background knowledge stored as part
of the rationale. This background knowledge refers to the items in the
argument ontology and stores the relationships between them.

6. Support for Rationale Use

Design Rationale is very useful even if it is only used as a form of
documentation that provides extra insight into the designer’s decision-
making process. SEURAT supports the viewing of DR by allowing the
software developer to associate the rationale with the code and by using
Rationale Indicators to show which pieces of code have rationale available.
Figure 6 shows a portion of the Package Explorer from the Eclipse Java IDE
where the presence of rationale is indicated by a small modification to the
upper left hand corner of the “J” icon indicating a Java file.

DR can provide even more useful information about the design and
modifications made to the design if there is a way to perform inferences over
it. Due to the nature of DR, the results may be in the form of warnings or
information (as opposed to conclusions) that help the developer keep track
of the development process and help the maintainer act carefully and
consistently. In the following sections we describe a number of different
SEURAT inferences both implemented and planned.

We have chosen to break our inferences into four categories: syntactic,
semantic, queries, and historical. Syntactic inferences are those that are
concerned mostly with the structure of the rationale. They look for
information that is missing. Semantic inferences require looking into the

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 13

content of the rationale to evaluate the consistency of the design reasoning
and point out cases made where less-supported decisions were made.
Rationale queries give the user the ability to ask questions about the
rationale, and historical inferences use a history of rationale changes to help
the user learn from past mistakes, rather than repeating them.

Figure 6. Package Explorer Showing Rationale Associations

6.1 SYNTACTIC INFERENCING

Syntactic inferencing is primarily concerned with the structure of the
rationale – ensuring that the rationale is complete. This is a significant aid to
the developer to make sure they do not leave any unresolved issues behind
when building the system. These inferences include the following:

• Checking for decisions with no selected alternatives;
• Checking for decisions with more than one selected alternative when

there should be only one;
• Checking for selected alternatives with no arguments in their favor;
• Checking for selected alternatives with only arguments in opposition;
• Checking for biased arguments where some alternatives have many

arguments (for and/or against) while others have few or none.
SEURAT currently displays which alternative has been selected for each
decision and indicates that there is an error if no alternative is selected.
Errors are shown in two places: an error indicator on the rationale item in the

14 J. E. BURGE AND D.C. BROWN

Rationale Explorer and an error description on the Rationale Task List.
Figure 7 shows the Rationale Explorer with an error indicator showing that
no alternative was selected for the decision “what to call date compare
method” and Figure 8 shows the Rationale Task List that displays that error,
and others. Errors are indicated by a red icon containing an “X”.

Figure 7. Rationale Explorer Showing Rationale Error

Figure 8. Rationale Task List

6.2 SEMANTIC INFERENCES

While syntactic inferences look at the structure of the rationale, the semantic
inferences look at the content. This allows a more in-depth look for any
inconsistencies in reasoning that are captured in the rationale. The syntactic
inferences implemented in SEURAT include the following:

• Determining if the best supported alternatives were selected;
• Checking for contradictory arguments by using the argument

ontology to compare claims;
• Checking for violated requirements;
• Checking for violations of the tradeoff and co-occurrence

relationships captured in the rationale.
Some of these results are shown as errors, such as when a requirement is
violated, while others are warnings. Figure 9 shows how a warning is
indicated when the inferencing shows that the best alternative was not

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 15

selected for the decision “How is the user associated with the meeting.” This
warning also shows up on the Rationale Task List shown in Figure 8. The
warning is displayed as a yellow triangle icon with an exclamation point
inside it.

Figure 9. Rationale Explorer with Warning Indicator

The semantic inferencing also allows the user to do some “what-if”
reasoning by making changes to the rationale and seeing what effect that has
on the decisions that have been made. For example, SEURAT provides the
ability to disable requirements or assumptions and re-compute the evaluation
of each decision. Figure 10 shows the Rationale Explorer after an
assumption, “customer normally combines room and building” has been
disabled. The assumption, denoted by an icon containing an “A”, is changed
to have a “D” in the upper right hand corner showing it is disabled. When
the decision is re-evaluated, a warning icon is shown because the selected
alternative (denoted by an “S” in the upper right hand corner) is no longer
the best supported. The new warning is added to the Rationale Task List
shown in Figure 11.

Another way that semantic inferencing is useful is in evaluating the effect
of changing priorities on the design. Arguments for and against alternatives
can consist of requirements, other alternatives (in case of dependencies),
arguments, and claims. Each argument has an importance associated with it
that can either be set at the argument level of, in the case of assumptions and

16 J. E. BURGE AND D.C. BROWN

claims, inherited. Each claim is associated with an entry in the argument
ontology, which also has an importance assigned. The user can change the
importance at any of the three levels (ontology, claim, or argument) and will
be able to examine how that change affects the evaluation of the rationale.

Figure 10. Rationale Explorer with Disabled Assumption

Figure 11. Rationale Task List with New Warning

6.3 RATIONALE QUERIES

Rationale queries are inferences that are performed only upon request, not
automatically when the rationale changes. These queries are used to obtain
additional information about the rationale or the design. Rationale queries
supported by SEURAT include the following:

• Listing all selected alternatives that address or satisfy a specific
requirement;

• Listing all non-selected alternatives that address or satisfy a specific
requirement;

• Listing which alternatives are argued (for or against) by a specific
claim or specific ontology entry;

• Listing where there were importance overrides (from the default
specified in the argument ontology) in the rationale;

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 17

• Listing all disabled entities (assumptions, claims, or requirements) in
the rationale;

• Listing the most frequently referenced ontology entries (i.e., common
arguments for and against alternatives).

The results of these queries will not result in errors or warnings about the
rationale but will provide useful information to assist the developer in
understanding the rationale and the system it describes.

6.4 HISTORICAL INFERENCING

The final component of SEURAT inferencing is inferences that take
advantage of stored history about changes to the rationale. One of the
motivating reasons for keeping track of rationale is to avoid repeating past
mistakes by documenting alternatives that were attempted and then rejected.
History-based inferences would be used to ensure that the developer does
not select an alternative that was rejected before without being aware of the
reasons for why it failed the first time. The rationale history is also used to
keep track of which areas of the design have been the most volatile.

6.5 SEURAT IMPLEMENTATION

SEURAT is implemented as a Java Plugin for the Eclipse framework. This
provides tight integration with the Eclipse Java IDE where the rationale
associations are shown as part of the Java editor used to develop the code
that the rationale describes and where the rationale and rationale status
displays are all shown as windows within the IDE. The rationale is stored in
a MySQL database. This provides scalability to large amounts of rationale
and allows the use of SQL queries to assist in the inferencing. The database
relationships can be used to propagate the results of rationale changes to
other affected portions of the rationale. These links between the rationale act
much like dependencies described in a truth maintenance system except that
we are not asserting the truth of the statements.

7. Conclusions and Future Work

The SEURAT system provides a number of important innovations
contributing towards effective use of rationale for software maintenance.
The first is the argument ontology. This contributes in several ways: first, by
creating an extensive list of reasons for making software design choices and
secondly by using these reasons to support semantic inferencing to
determine the impact of these choices on the software system and to promote
consistency in the rationale. Another key contribution is the integration of
SEURAT into a software development environment used by the developers
and maintainers. This allows both the developers and maintainers to use the

18 J. E. BURGE AND D.C. BROWN

rationale without having to remember to invoke a separate utility or
environment and lessens the disruption that can occur when switching from
development to documentation.

Future work on SEURAT will involve expansion of the inference set and
enhancements to the integration with the Eclipse Java IDE. These changes
will increase both the functionality and usability of the SEURAT system.
The system will be evaluated in a series of experiments with software
developers of varying levels of expertise performing a series of maintenance
tasks to determine the effectiveness of the rationale support.

We feel that the SEURAT system will be invaluable during development
and maintenance of software systems. During development, SEURAT will
help the developers ensure that the systems they build are complete and
consistent. During maintenance, SEURAT will provide insight into the
reasons behind the choices made by the developers during design and
implementation. The benefits of DR are clear but only with appropriate tool
support, such as that provided by SEURAT, can DR live up to its full
potential as an aid for revising, maintaining, and documenting the software
design and implementation.

References

Boehm, B and Bose, P: 1994, A Collaborative Spiral Software Process Model Based on
Theory W, Proc. 3rd International Conf. on the Software Process, IEEE Computer
Society Press, CA, pp. 59-68.

Bose, P: 1995, A Model for Decision Maintenance in the WinWin Collaboration Framework,
Proc. of the Conf. on Knowledge-based Software Engineering, IEEE Computer Society
Press, CA, pp. 105-113.

Brooks, FP Jr.: 1995, The Mythical Man-Month, Addison Wesley, MA.
Burge, JE and Brown, DC: 2000, Inferencing Over Design Rationale, in J Gero (ed),

Artificial Intelligence in Design ‘00, Kluwer Academic Publishers, Netherlands, pp. 611-
629.

Burge, JE and Brown, DC: 2002, NFRs: Fact or Fiction?, Technical Report WPI-CS-TR-02-
01, Computer Science Department, WPI.

Bruegge D and Dutoit A: 2000, Object-Oriented Software Engineering: Conquering Complex
and Changing Systems, Prentice Hall.

Chung, L, Nixon, BA, Yu, E, and Mylopoulos, J: 2000, Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers.

CMU: 2002, Quality measures taxonomy,
 http://www.sei.cmu.edu/str/taxonomies/view_qm.html
Conklin, J and Burgess-Yakemovic, K: 1995, A Process-Oriented Approach to Design

Rationale, in T Moran and J Carroll (eds), Design Rationale Concepts, Techniques, and
Use, (eds), Lawrence Erlbaum Associates, Mahwah, NJ, pp. 293-428.

Dellen, B, Kohler, K, and Maurer, F: 1996, Integrating Software Process Models and Design
Rationales, Proc. of the Conf. on Knowledge-based Software Engineering, IEEE
Computer Society Press, pp. 84-93.

Filman, RE: 1998, Achieving Ilities, in Proc. of the Workshop on Compositional Software
Architectures, Monterey, CA, USA.

http://www.sei.cmu.edu/str/taxonomies/view_qm.html

 SOFTWARE DESIGN CHECKING USING DESIGN RATIONALE 19

Fischer, G, Lemke, A, McCall, R and Morch, A: 1995, Making Argumentation Serve Design,
in T Moran and J Carroll (eds), Design Rationale Concepts, Techniques, and Use,
Lawrence Erlbaum Associates, pp. 267-294.

Grudin, J: 1995, Evaluating Opportunities for Design Capture, in T Moran and J Carroll
(Eds), Design Rationale Concepts, Techniques, and Use, Lawrence Erlbaum Associates,
NJ, pp. 453-470.

Jiro, K: 2000, KJ Method: A Scientific Approach to Problem Solving, Tokyo: Kawakita
Research Institute.

Karsenty, L: 1996, An Empirical Evaluation of Design Rationale Documents, in Proceedings
of the Conference on Human Factors in Computing Systems, Vancouver, BC, April 13-
18.

Klein, M: 1997, An Exception Handling Approach to Enhancing Consistency, Completeness
and Correctness in Collaborative Requirements Capture, Concurrent Engineering
Research and Applications, March, 1997, pp. 37-46.

Lee, J: 1990, SIBYL: A qualitative design management system, in PH Winston and S
Shellard (eds), Artificial Intelligence at MIT: Expanding Frontiers, Cambridge MA: MIT
Press, pp. 104-133.

Lee, J: 1991, Extending the Potts and Bruns Model for Recording Design Rationale, in Proc.
of the 13th International Conf. On Software Engineering, Austin, TX, pp. 114-125.

MacLean, A, Young, RM, Bellotti, V, and Moran, TP: 1995, “Questions, Options and
Criteria: Elements of Design Space Analysis”, in T Moran and J Carroll (Eds), Design
Rationale Concepts, Techniques, and Use, Lawrence Erlbaum Associates, NJ, pp. 201-
251.

Peña-Mora, F and Vadhavkar, S: 1996, Augmenting design patterns with design rationale,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 11,
Cambridge University Press, pp. 93-108.

Potts, C and Bruns, G: 1988, Recording the Reasons for Design Decisions, in Proc. of the
International Conf. On Software Engineering, Singapore, pp. 418-427.

Reiss, SP: 2002, Constraining Software Evolution, in Proc. of the International Conference
on Software Maintenance, Montreal, Quebec, Canada, pp. 162-171.

Toumlin, S: 1958, The Users of Argument, Cambridge University Press

	1. Introduction
	1.1 DIFFICULTIES WITH RATIONALE
	1.2 USES OF RATIONALE

	2. Related Work
	2.1 RATIONALE USE
	2.2 EVALUATING USEFULNESS

	3. Approach
	4. Representation
	5. Argument Ontology
	6. Support for Rationale Use
	6.1 SYNTACTIC INFERENCING
	6.2 SEMANTIC INFERENCES
	6.3 RATIONALE QUERIES
	6.4 HISTORICAL INFERENCING
	6.5 SEURAT IMPLEMENTATION

	7. Conclusions and Future Work
	References

