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Introduction

Our main goal is to study the following problem:
General problem: Given fixed positive integers s, t, and a family of
graphs F , what is the maximum number of vertices that can be covered
by the vertices of no more than s monochromatic members of F in every
edge coloring of Kn with t colors? Let us introduce the notation
f (n, s, t,F) for this quantity. More precisely, f (n, s, t,F) is the minimum
(for all colorings) of the maximum size of all such covers.

Typical families F : paths P, cycles C, matchings M,
connected matchings CM or simply connected components CC.

This general problem unites two classical problems.
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Introduction

One end of the spectrum: s = 1, the Ramsey problem.
Find the size of the largest monochromatic member of F that must
be present in any edge coloring of a complete graph Kn with t colors.
A difficult, classical problem, many papers.

The other end of the spectrum: Cover problems (our main focus).
We want to cover all the vertices by vertex disjoint monochromatic
members of F , how many do we need, i.e. for what value of s do we
have f (n, s, t,F) = n. Also a classical problem, for example an old
Erdős-Gyárfás-Pyber conjecture states that f (n, t, t, C) = n, i.e. we
can always partition the vertex set into t monochromatic cycles.

But there are some interesting problems “in-between” as well.
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Notation and definitions

Kn is the complete graph on n vertices, K (u, v) is the complete
bipartite graph between U and V with |U| = u, |V | = v .

δ(G ) stands for the minimum degree, α(G ) for the independence
number of a graph G .

When A,B are disjoint subsets of V (G ), we denote by e(A,B) the
number of edges of G with one endpoint in A and the other in B. For
non-empty A and B,

d(A,B) =
e(A,B)

|A||B|
is the density of the graph between A and B.

Sárközy (WPI–Renyi) Coverings by monochromatic pieces March 17, 2013 5 / 30



Notation and definitions

The bipartite graph G (A,B) (or simply the pair (A,B)) is called
ε-regular if

X ⊂ A, Y ⊂ B, |X | > ε|A|, |Y | > ε|B|

imply
|d(X ,Y )− d(A,B)| < ε,

otherwise it is ε-irregular.

A

B

X

Y
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Notation and definitions

(A,B) is (ε, δ)-super-regular if it is ε-regular and

deg(a) > δ|B| ∀ a ∈ A, deg(b) > δ|A| ∀ b ∈ B.
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Overview of the Regularity method

Our main proof method is the Regularity Method based on the Regularity
Lemma (Szemerédi ’78) and the Blow-up Lemma (Komlós, G.S.,
Szemerédi ’97), so before we get into the results we will give a quick
review of this method. Here the Regularity Lemma finds an ε-regular
partition and the Blow-up Lemma shows how to use this.
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Regularity Lemma

Lemma (Regularity Lemma, Szemerédi ’78)

For every ε > 0 and positive integer m there are positive integers
M = M(ε,m) and N = N(ε,m) with the following property: for every
graph G with at least N vertices there is a partition of the vertex set into
l + 1 classes (clusters)

V = V0 + V1 + V2 + . . .+ Vl

such that

m ≤ l ≤ M

|V1| = |V2| = . . . = |Vl |
|V0| < εn

apart from at most ε
( l

2

)
exceptional pairs, all the pairs (Vi ,Vj) are

ε-regular.
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Overview of the Regularity method

Decompose G into clusters by using the Regularity Lemma (with a small
enough ε). Define the so-called reduced graph Gr : the vertices correspond
to the clusters, p1, . . . , pl , and we have an edge between pi and pj if the
pair (Vi ,Vj) is ε-regular with d(Vi ,Vj) ≥ δ (with some δ � ε). Then we
have a one-to-one correspondence f : pi → Vi . Key observations:

Gr has only a constant number of vertices.

Gr “inherits” the most important properties of G (e.g. degree and
density conditions).

Gr is the “essence” of G .

If G is colored then we can define a coloring in Gr as well.
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Overview of the Regularity method

Special case of the Blow-up Lemma: In a balanced (ε, δ)-super-regular pair
G there is a Hamiltonian path H (max degree=2).

V

V

1

2
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Overview of the Regularity method

Using this we can get our main tool:
If we have a connected matching in Gr , then we can span most of the
vertices in these clusters by a path or cycle in G , i.e. we can “lift” the
connected matching back into a path or cycle in the original graph. Thus
roughly speaking

f (n, s, t,P) ∼ f (n, s, t, CM).

(An idea first observed by  Luczak.)
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One end of the spectrum: the Ramsey problem

Recall the definition of f (n, s, t,F).
Here we have s = 1. We consider paths P.
For t = 2 we have

f (n, 1, 2,P) ∼ 2n

3
.

More precisely, using the inverse Ramsey formulation:

Theorem (Gerencsér, Gyárfás ’67)

R(Pn,Pn) =

⌊
3n − 2

2

⌋
.
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The Ramsey problem

For t = 3 we have
f (n, 1, 3,P) ∼ n

2
.

More precisely (for large n):

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi ’07)

There exists an n0 such that

R(Pn,Pn,Pn) =

{
2n − 1 for odd n ≥ n0,
2n − 2 for even n ≥ n0.

Proof ideas: Regularity method +

f (n, 1, 3,P) ∼ f (n, 1, 3, CM) ∼ f (n, 1, 3,M) ∼ f (n, 1, 3, CC) ∼ n

2
.
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The Ramsey problem

Recently we extended this (at least asymptotically) for the following larger
family of graphs:

Definition

A bipartite graph H is called a (β,∆)-graph if it has bandwidth at most
β|V (H)| and maximum degree at most ∆. Furthermore, we say that H is
a balanced (β,∆)-graph if it has a legal 2-coloring χ : V (H)→ [2] such
that 1− β ≤ |χ−1(1)|/|χ−1(2)| ≤ 1 + β.

Theorem (Mota, G.S., Schacht, Taraz ’13)

For every γ > 0 and natural number ∆, there exist a constant β > 0 and
natural number n0 such that for every balanced (β,∆)-graph H on n ≥ n0

vertices we have
R(H,H,H) ≤ (2 + γ)n.
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The Ramsey problem

Going back to paths what about t = 4 (or higher)? Wide open. The
above is not true anymore:

f (n, 1, 4,M) ∼ 2n

5
, f (n, 1, 4, CC) ∼ n

3
.

We believe:

f (n, 1, 4,P) ∼ f (n, 1, 4, CM) ∼ f (n, 1, 4, CC) ∼ n

3
.
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The other end of the spectrum: cover problems

Here we want f (n, s, t,F) = n.
First t = 2 and F = P:

Claim

f (n, 2, 2,P) = n,

in fact we can partition into 2 monochromatic paths of different color.

Proof: Either v can be placed to the end of P1 or P2 or (x1, v) is blue and
(x2, v) is red. Then let’s look at (x1, x2), wlog it’s red, then we can extend
P1 by x2, v .

P
1

P
2 x

2

x
1

v
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Cover problems

Next t = 2 and F = C. Lehel conjectured that the same is true for cycles:

f (n, 2, 2, C) = n,

where again we can partition into 2 monochromatic cycles of different
color.

 Luczak, Rödl, Szemerédi ’98: proof for n ≥ n0 (using the Regularity
Method).

Allen ’08: improved on n0.

Bessy, Thomassé ’09: for all n.
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Cover problems

For general t Erdős-Gyárfás-Pyber conjecture:

Conjecture

f (n, t, t, C) = n.

(Here single vertices, edges and the empty set are considered to be
degenerate cycles). This would be best possible, we need at least t cycles.

Theorem (Erdős, Gyárfás, Pyber ’91)

We can cover by ≤ ct2 log t vertex disjoint monochromatic cycles.
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Cover problems

Proof sketch: (Absorbing method.)

Step 1: Find a large monochromatic (say red) triangle cycle.
Property: If A is the set of ”third” vertices in the triangles, then if we
remove a subset of A there is still a spanning red cycle.

Step 2: Greedily remove monochromatic cycles until the leftover B is
small compared to A.

Step 3: Unbalanced bipartite cover lemma between A and B. (The
triangle cycle absorbs the leftover.)

Sárközy (WPI–Renyi) Coverings by monochromatic pieces March 17, 2013 20 / 30



Cover problems

...

B
A
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Cover problems

Current best result for general t:

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi ’06)

For every integer t ≥ 2 there exists a constant n0 = n0(t) such that if
n ≥ n0 and the edges of the complete graph Kn are colored with t colors
then the vertex set of Kn can be partitioned into at most 100t log t vertex
disjoint monochromatic cycles.

Proof idea: Regularity Method combined with the absorbing method, the
triangle cycle is replaced with a larger monochromatic absorbing structure,
a dense, connected matching. However, the greedy procedure stays, that’s
why we have the log t.
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Cover problems

t = 3:

Gyárfás, Ruszinkó, G.S., Szemerédi ’11: ≥ (1− ε)n vertices can be
covered by 3 monochromatic cycles.

n vertices can be covered by 3 connected matchings.

n vertices can be covered by 17 monochromatic cycles.

Pokrovskiy ’12: n vertices can be covered by 3 monochromatic paths.

Pokrovskiy ’12: The conjecture is not true for any t ≥ 3.

However, in the counterexample all but one vertex can be covered by t
vertex disjoint monochromatic cycles. So perhaps the following weaker
conjecture is true:

Conjecture

Let G be a t-colored graph. Then there exist a constant c = c(t) and t
vertex disjoint monochromatic cycles of G that cover at least n − c
vertices.
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Generalized cover problems

1st generalization: non-complete graphs, we t-color a graph G with
α(G ) = α. We may define f (n, α, s, t,F) in a similar way.

Conjecture (G.S. ’11)

f (n, α, tα, t, C) = n.

For t = 1, this is a well-known result of Pósa (and clearly best possible).
For t = 2 it would also be best possible. However, we only have an
asymptotic result:

Theorem (Balog, Barát, Gerbner, Gyárfás, G.S. ’12)

For every positive η and α, there exists an n0(η, α) such that the following
holds. If G is a 2-colored graph on n vertices, n ≥ n0, α(G ) = α, then
there are at most 2α vertex disjoint monochromatic cycles covering at
least (1− η)n vertices of V (G ).
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Generalized cover problems

For a general t we have the following result:

Theorem (G.S. ’11)

The vertex set of any t-colored G with α(G ) = α can be partitioned into
at most 25(αt)2 log(αt) vertex disjoint monochromatic cycles.

Proof idea: Absorbing Method + induction on α.

Unfortunately, Pokrovskiy’s counterexample disproves this conjecture as
well. Perhaps the following weaker conjecture is true:

Conjecture

Let G be a t-colored graph with α(G ) = α. Then there exist a constant
c = c(α, t) and tα vertex disjoint monochromatic cycles of G that cover
at least n − c vertices.

Pokrovskiy’s counterexample implies that c ≥ α.
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Generalized cover problems

2nd generalization: non-complete graphs, we t-color a graph G with
δ(G ) > δ. We may define f (n, δ, s, t,F) in a similar way.

Conjecture

f (n,
3n

4
, 2, 2, C) = n,

where again we can partition into 2 monochromatic cycles of different
color.

Thus the Bessy-Thomassé result would hold for graphs with minimum
degree larger than 3n/4 (sharp). Again, we only have an asymptotic result:

Theorem (Balog, Barát, Gerbner, Gyárfás, G.S. ’12)

For every η > 0, there is an n0(η) such that if G is a graph on n ≥ n0

vertices, δ(G ) > ( 3
4 + η)n, then every 2-edge-coloring of G admits two

vertex disjoint monochromatic cycles of different colors covering at least
(1− η)n vertices of G .
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Generalized cover problems

3rd generalization: hypergraphs, we t-color the edges of the complete

k-uniform hypergraph K
(k)
n . We may define fk(n, s, t,F) in a similar way.

Let us consider loose cycles first. The definition is similar for K
(k)
n .

Definition

Cm is a loose cycle in K
(3)
n , if it has vertices {v1, . . . , vm} and edges

{(v1, v2, v3), (v3, v4, v5), (v5, v6, v7), . . . , (vm−1, vm, v1)}

(so in particular m is even).
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Generalized cover problems

We have the following result for loose cycles (improving an earlier result):

Theorem (G.S. ’12)

For all integers t, k ≥ 2 there exists a constant n0 = n0(t, k) such that if

n ≥ n0 and the edges of the complete k-uniform hypergraph K
(k)
n are

colored with t colors then the vertex set can be partitioned into at most
50tk log (tk) vertex disjoint monochromatic loose cycles.

The proof is using the Strong Hypergraph Regularity Lemma and the
recent Hypergraph Blow-up Lemma of Keevash.
We do not risk an exact conjecture here. It would be nice to prove a
similar result for tight cycles.
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In-between problems

Returning to the original f (n, s, t,P). Many open problems. Let us
mention one interesting problem here:

Conjecture

f (n, 2, 3,P) ∼ f (n, 2, 3, C) ∼ 6n

7
.

The reason why we believe this is the following theorem:

Theorem (Gyárfás, G.S., Selkow ’11)

f (n, t − 1, t,M) ∼ (2t − 2)n

2t − 1
, so f (n, 2, 3,M) ∼ 6n

7
.

If we could generalize this for CM, then we would get the conjecture.
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