Coverings by monochromatic pieces

Gábor N. Sárközy

${ }^{1}$ Worcester Polytechnic Institute USA

${ }^{2}$ Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences
Budapest, Hungary

March 17, 2013

Outline of Topics

(1) Introduction: the general problem
(2) Notation and definitions
(3) Overview of the Regularity method
(4) One end of the spectrum: the Ramsey problem
(5) The other end of the spectrum: cover problems
(6) Generalized cover problems
(7) In-between problems

Introduction

Our main goal is to study the following problem:
General problem: Given fixed positive integers s, t, and a family of graphs \mathcal{F}, what is the maximum number of vertices that can be covered by the vertices of no more than s monochromatic members of \mathcal{F} in every edge coloring of K_{n} with t colors? Let us introduce the notation $f(n, s, t, \mathcal{F})$ for this quantity. More precisely, $f(n, s, t, \mathcal{F})$ is the minimum (for all colorings) of the maximum size of all such covers.

Typical families \mathcal{F} : paths \mathcal{P}, cycles \mathcal{C}, matchings \mathcal{M}, connected matchings $\mathcal{C M}$ or simply connected components $\mathcal{C C}$.

This general problem unites two classical problems.

Introduction

- One end of the spectrum: $s=1$, the Ramsey problem. Find the size of the largest monochromatic member of \mathcal{F} that must be present in any edge coloring of a complete graph K_{n} with t colors. A difficult, classical problem, many papers.
- The other end of the spectrum: Cover problems (our main focus). We want to cover all the vertices by vertex disjoint monochromatic members of \mathcal{F}, how many do we need, i.e. for what value of s do we have $f(n, s, t, \mathcal{F})=n$. Also a classical problem, for example an old Erdős-Gyárfás-Pyber conjecture states that $f(n, t, t, \mathcal{C})=n$, i.e. we can always partition the vertex set into t monochromatic cycles.

But there are some interesting problems "in-between" as well.

Notation and definitions

- K_{n} is the complete graph on n vertices, $K(u, v)$ is the complete bipartite graph between U and V with $|U|=u,|V|=v$.
- $\delta(G)$ stands for the minimum degree, $\alpha(G)$ for the independence number of a graph G.
- When A, B are disjoint subsets of $V(G)$, we denote by $e(A, B)$ the number of edges of G with one endpoint in A and the other in B. For non-empty A and B,

$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$

is the density of the graph between A and B.

Notation and definitions

- The bipartite graph $G(A, B)$ (or simply the pair (A, B)) is called ϵ-regular if

$$
X \subset A, Y \subset B,|X|>\epsilon|A|,|Y|>\epsilon|B|
$$

imply

$$
|d(X, Y)-d(A, B)|<\epsilon,
$$

otherwise it is ϵ-irregular.

B

Notation and definitions

- (A, B) is (ϵ, δ)-super-regular if it is ϵ-regular and

$$
\operatorname{deg}(a)>\delta|B| \forall a \in A, \quad \operatorname{deg}(b)>\delta|A| \forall b \in B
$$

Overview of the Regularity method

Our main proof method is the Regularity Method based on the Regularity Lemma (Szemerédi '78) and the Blow-up Lemma (Komlós, G.S., Szemerédi '97), so before we get into the results we will give a quick review of this method. Here the Regularity Lemma finds an ϵ-regular partition and the Blow-up Lemma shows how to use this.

Regularity Lemma

Lemma (Regularity Lemma, Szemerédi '78)

For every $\epsilon>0$ and positive integer m there are positive integers $M=M(\epsilon, m)$ and $N=N(\epsilon, m)$ with the following property: for every graph G with at least N vertices there is a partition of the vertex set into $I+1$ classes (clusters)

$$
V=V_{0}+V_{1}+V_{2}+\ldots+V_{1}
$$

such that

- $m \leq I \leq M$
- $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{1}\right|$
- $\left|V_{0}\right|<\epsilon n$
- apart from at most $\epsilon\binom{l}{2}$ exceptional pairs, all the pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

Overview of the Regularity method

Decompose G into clusters by using the Regularity Lemma (with a small enough ϵ). Define the so-called reduced graph G_{r} : the vertices correspond to the clusters, p_{1}, \ldots, p_{l}, and we have an edge between p_{i} and p_{j} if the pair $\left(V_{i}, V_{j}\right)$ is ϵ-regular with $d\left(V_{i}, V_{j}\right) \geq \delta$ (with some $\delta \gg \epsilon$). Then we have a one-to-one correspondence $f: p_{i} \rightarrow V_{i}$. Key observations:

- G_{r} has only a constant number of vertices.
- G_{r} "inherits" the most important properties of G (e.g. degree and density conditions).
- G_{r} is the "essence" of G.
- If G is colored then we can define a coloring in G_{r} as well.

Overview of the Regularity method

Special case of the Blow-up Lemma: In a balanced (ϵ, δ)-super-regular pair G there is a Hamiltonian path H (max degree=2).

V_{2}

Overview of the Regularity method

Using this we can get our main tool:
If we have a connected matching in G_{r}, then we can span most of the vertices in these clusters by a path or cycle in G, i.e. we can "lift" the connected matching back into a path or cycle in the original graph. Thus roughly speaking

$$
f(n, s, t, \mathcal{P}) \sim f(n, s, t, \mathcal{C} \mathcal{M})
$$

(An idea first observed by Łuczak.)

One end of the spectrum: the Ramsey problem

Recall the definition of $f(n, s, t, \mathcal{F})$.
Here we have $s=1$. We consider paths \mathcal{P}.
For $t=2$ we have

$$
f(n, 1,2, \mathcal{P}) \sim \frac{2 n}{3}
$$

More precisely, using the inverse Ramsey formulation:
Theorem (Gerencsér, Gyárfás '67)

$$
R\left(P_{n}, P_{n}\right)=\left\lfloor\frac{3 n-2}{2}\right\rfloor .
$$

The Ramsey problem

For $t=3$ we have

$$
f(n, 1,3, \mathcal{P}) \sim \frac{n}{2}
$$

More precisely (for large n):

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi '07)

There exists an n_{0} such that

$$
R\left(P_{n}, P_{n}, P_{n}\right)=\left\{\begin{array}{l}
2 n-1 \text { for odd } n \geq n_{0} \\
2 n-2 \text { for even } n \geq n_{0}
\end{array}\right.
$$

Proof ideas: Regularity method +

$$
f(n, 1,3, \mathcal{P}) \sim f(n, 1,3, \mathcal{C M}) \sim f(n, 1,3, \mathcal{M}) \sim f(n, 1,3, \mathcal{C C}) \sim \frac{n}{2}
$$

The Ramsey problem

Recently we extended this (at least asymptotically) for the following larger family of graphs:

Definition

A bipartite graph H is called a (β, Δ)-graph if it has bandwidth at most $\beta|V(H)|$ and maximum degree at most Δ. Furthermore, we say that H is a balanced (β, Δ)-graph if it has a legal 2-coloring $\chi: V(H) \rightarrow[2]$ such that $1-\beta \leq\left|\chi^{-1}(1)\right| /\left|\chi^{-1}(2)\right| \leq 1+\beta$.

Theorem (Mota, G.S., Schacht, Taraz '13)

For every $\gamma>0$ and natural number Δ, there exist a constant $\beta>0$ and natural number n_{0} such that for every balanced (β, Δ)-graph H on $n \geq n_{0}$ vertices we have

$$
R(H, H, H) \leq(2+\gamma) n .
$$

The Ramsey problem

Going back to paths what about $t=4$ (or higher)? Wide open. The above is not true anymore:

$$
f(n, 1,4, \mathcal{M}) \sim \frac{2 n}{5}, f(n, 1,4, \mathcal{C C}) \sim \frac{n}{3}
$$

We believe:

$$
f(n, 1,4, \mathcal{P}) \sim f(n, 1,4, \mathcal{C M}) \sim f(n, 1,4, \mathcal{C C}) \sim \frac{n}{3}
$$

The other end of the spectrum: cover problems

Here we want $f(n, s, t, \mathcal{F})=n$.
First $t=2$ and $\mathcal{F}=\mathcal{P}$:

Claim

$$
f(n, 2,2, \mathcal{P})=n,
$$

in fact we can partition into 2 monochromatic paths of different color.
Proof: Either v can be placed to the end of P_{1} or P_{2} or $\left(x_{1}, v\right)$ is blue and $\left(x_{2}, v\right)$ is red. Then let's look at $\left(x_{1}, x_{2}\right)$, wlog it's red, then we can extend P_{1} by x_{2}, v.

Cover problems

Next $t=2$ and $\mathcal{F}=\mathcal{C}$. Lehel conjectured that the same is true for cycles:

$$
f(n, 2,2, \mathcal{C})=n,
$$

where again we can partition into 2 monochromatic cycles of different color.

- Łuczak, Rödl, Szemerédi '98: proof for $n \geq n_{0}$ (using the Regularity Method).
- Allen '08: improved on n_{0}.
- Bessy, Thomassé '09: for all n.

Cover problems

For general t Erdős-Gyárfás-Pyber conjecture:

Conjecture

$$
f(n, t, t, \mathcal{C})=n
$$

(Here single vertices, edges and the empty set are considered to be degenerate cycles). This would be best possible, we need at least t cycles.

Theorem (Erdős, Gyárfás, Pyber '91)

We can cover by $\leq c t^{2} \log t$ vertex disjoint monochromatic cycles.

Cover problems

Proof sketch: (Absorbing method.)

- Step 1: Find a large monochromatic (say red) triangle cycle. Property: If A is the set of "third" vertices in the triangles, then if we remove a subset of A there is still a spanning red cycle.
- Step 2: Greedily remove monochromatic cycles until the leftover B is small compared to A.
- Step 3: Unbalanced bipartite cover lemma between A and B. (The triangle cycle absorbs the leftover.)

Cover problems

Cover problems

Current best result for general t :

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi '06)

For every integer $t \geq 2$ there exists a constant $n_{0}=n_{0}(t)$ such that if $n \geq n_{0}$ and the edges of the complete graph K_{n} are colored with t colors then the vertex set of K_{n} can be partitioned into at most $100 t \log t$ vertex disjoint monochromatic cycles.

Proof idea: Regularity Method combined with the absorbing method, the triangle cycle is replaced with a larger monochromatic absorbing structure, a dense, connected matching. However, the greedy procedure stays, that's why we have the $\log t$.

Cover problems

$t=3:$

- Gyárfás, Ruszinkó, G.S., Szemerédi '11: $\geq(1-\epsilon) n$ vertices can be covered by 3 monochromatic cycles.
- n vertices can be covered by 3 connected matchings.
- n vertices can be covered by 17 monochromatic cycles.

Cover problems

$t=3:$

- Gyárfás, Ruszinkó, G.S., Szemerédi '11: $\geq(1-\epsilon) n$ vertices can be covered by 3 monochromatic cycles.
- n vertices can be covered by 3 connected matchings.
- n vertices can be covered by 17 monochromatic cycles.
- Pokrovskiy '12: n vertices can be covered by 3 monochromatic paths.

Cover problems

$t=3:$

- Gyárfás, Ruszinkó, G.S., Szemerédi '11: $\geq(1-\epsilon) n$ vertices can be covered by 3 monochromatic cycles.
- n vertices can be covered by 3 connected matchings.
- n vertices can be covered by 17 monochromatic cycles.
- Pokrovskiy '12: n vertices can be covered by 3 monochromatic paths.
- Pokrovskiy '12: The conjecture is not true for any $t \geq 3$.

However, in the counterexample all but one vertex can be covered by t vertex disjoint monochromatic cycles. So perhaps the following weaker conjecture is true:

Conjecture

Let G be a t-colored graph. Then there exist a constant $c=c(t)$ and t vertex disjoint monochromatic cycles of G that cover at least $n-c$ vertices.

Generalized cover problems

1st generalization: non-complete graphs, we t-color a graph G with $\alpha(G)=\alpha$. We may define $f(n, \alpha, s, t, \mathcal{F})$ in a similar way.

Conjecture (G.S. '11)

$$
f(n, \alpha, t \alpha, t, \mathcal{C})=n
$$

Generalized cover problems

1st generalization: non-complete graphs, we t-color a graph G with $\alpha(G)=\alpha$. We may define $f(n, \alpha, s, t, \mathcal{F})$ in a similar way.

Conjecture (G.S. '11)

$$
f(n, \alpha, t \alpha, t, \mathcal{C})=n
$$

For $t=1$, this is a well-known result of Pósa (and clearly best possible).

Generalized cover problems

1st generalization: non-complete graphs, we t-color a graph G with $\alpha(G)=\alpha$. We may define $f(n, \alpha, s, t, \mathcal{F})$ in a similar way.

Conjecture (G.S. '11)

$$
f(n, \alpha, t \alpha, t, \mathcal{C})=n
$$

For $t=1$, this is a well-known result of Pósa (and clearly best possible). For $t=2$ it would also be best possible. However, we only have an asymptotic result:

Theorem (Balog, Barát, Gerbner, Gyárfás, G.S. '12)

For every positive η and α, there exists an $n_{0}(\eta, \alpha)$ such that the following holds. If G is a 2 -colored graph on n vertices, $n \geq n_{0}, \alpha(G)=\alpha$, then there are at most 2α vertex disjoint monochromatic cycles covering at least $(1-\eta) n$ vertices of $V(G)$.

Generalized cover problems

For a general t we have the following result:

Theorem (G.S. '11)

The vertex set of any t-colored G with $\alpha(G)=\alpha$ can be partitioned into at most $25(\alpha t)^{2} \log (\alpha t)$ vertex disjoint monochromatic cycles.

Proof idea: Absorbing Method + induction on α.

Generalized cover problems

For a general t we have the following result:

Theorem (G.S. '11)

The vertex set of any t-colored G with $\alpha(G)=\alpha$ can be partitioned into at most $25(\alpha t)^{2} \log (\alpha t)$ vertex disjoint monochromatic cycles.

Proof idea: Absorbing Method + induction on α.
Unfortunately, Pokrovskiy's counterexample disproves this conjecture as well. Perhaps the following weaker conjecture is true:

Conjecture

Let G be a t-colored graph with $\alpha(G)=\alpha$. Then there exist a constant $c=c(\alpha, t)$ and $t \alpha$ vertex disjoint monochromatic cycles of G that cover at least $n-c$ vertices.

Pokrovskiy's counterexample implies that $c \geq \alpha$.

Generalized cover problems

2nd generalization: non-complete graphs, we t-color a graph G with $\delta(G)>\delta$. We may define $f(n, \delta, s, t, \mathcal{F})$ in a similar way.

Conjecture

$$
f\left(n, \frac{3 n}{4}, 2,2, \mathcal{C}\right)=n
$$

where again we can partition into 2 monochromatic cycles of different color.

Thus the Bessy-Thomassé result would hold for graphs with minimum degree larger than 3n/4 (sharp). Again, we only have an asymptotic result:

Generalized cover problems

2nd generalization: non-complete graphs, we t-color a graph G with $\delta(G)>\delta$. We may define $f(n, \delta, s, t, \mathcal{F})$ in a similar way.

Conjecture

$$
f\left(n, \frac{3 n}{4}, 2,2, \mathcal{C}\right)=n
$$

where again we can partition into 2 monochromatic cycles of different color.

Thus the Bessy-Thomassé result would hold for graphs with minimum degree larger than 3n/4 (sharp). Again, we only have an asymptotic result:

Theorem (Balog, Barát, Gerbner, Gyárfás, G.S. '12)

For every $\eta>0$, there is an $n_{0}(\eta)$ such that if G is a graph on $n \geq n_{0}$ vertices, $\delta(G)>\left(\frac{3}{4}+\eta\right) n$, then every 2 -edge-coloring of G admits two vertex disjoint monochromatic cycles of different colors covering at least $(1-\eta) n$ vertices of G.

Generalized cover problems

3rd generalization: hypergraphs, we t-color the edges of the complete k-uniform hypergraph $K_{n}^{(k)}$. We may define $f_{k}(n, s, t, \mathcal{F})$ in a similar way. Let us consider loose cycles first. The definition is similar for $K_{n}^{(k)}$.

Definition

C_{m} is a loose cycle in $K_{n}^{(3)}$, if it has vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges

$$
\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{3}, v_{4}, v_{5}\right),\left(v_{5}, v_{6}, v_{7}\right), \ldots,\left(v_{m-1}, v_{m}, v_{1}\right)\right\}
$$

(so in particular m is even).

Generalized cover problems

We have the following result for loose cycles (improving an earlier result):

Theorem (G.S. '12)

For all integers $t, k \geq 2$ there exists a constant $n_{0}=n_{0}(t, k)$ such that if $n \geq n_{0}$ and the edges of the complete k-uniform hypergraph $K_{n}^{(k)}$ are colored with t colors then the vertex set can be partitioned into at most $50 t k \log (t k)$ vertex disjoint monochromatic loose cycles.

The proof is using the Strong Hypergraph Regularity Lemma and the recent Hypergraph Blow-up Lemma of Keevash.
We do not risk an exact conjecture here. It would be nice to prove a similar result for tight cycles.

In-between problems

Returning to the original $f(n, s, t, \mathcal{P})$. Many open problems. Let us mention one interesting problem here:

Conjecture

$$
f(n, 2,3, \mathcal{P}) \sim f(n, 2,3, \mathcal{C}) \sim \frac{6 n}{7}
$$

The reason why we believe this is the following theorem:

Theorem (Gyárfás, G.S., Selkow '11)

$$
f(n, t-1, t, \mathcal{M}) \sim \frac{\left(2^{t}-2\right) n}{2^{t}-1}, \text { so } f(n, 2,3, \mathcal{M}) \sim \frac{6 n}{7}
$$

If we could generalize this for $\mathcal{C M}$, then we would get the conjecture.

References

Most of the problems and results mentioned can be found in:

- G.N. Sárközy, "Coverings by monochromatic pieces - problems for the Emléktábla workshop." Proceedings of the 3rd Emléktábla Workshop, János Bolyai Mathematical Society, 2011, pp. 1-9.
This paper and all of my papers can be downloaded from my homepage: http://web.cs.wpi.edu/~gsarkozy/

References

Most of the problems and results mentioned can be found in:

- G.N. Sárközy, "Coverings by monochromatic pieces - problems for the Emléktábla workshop." Proceedings of the 3rd Emléktábla Workshop, János Bolyai Mathematical Society, 2011, pp. 1-9.
This paper and all of my papers can be downloaded from my homepage: http://web.cs.wpi.edu/~gsarkozy/

Thank you!

