On the Regularity Method

Gábor N. Sárközy

${ }^{1}$ Worcester Polytechnic Institute USA

${ }^{2}$ Computer and Automation Research Institute of the Hungarian Academy of Sciences

Budapest, Hungary

Co-authors: P. Dorbec, S. Gravier, A. Gyárfás, J. Lehel, R. Schelp and E. Szemerédi
November 27, 2008

Outline of Topics

(1) Introduction
(2) History of the Regularity method
(3) Notation and definitions

4 Overview of the Regularity method
(5) Some applications of the method

6 Cycles in hypergraphs

Introduction

In many problems in graph (or hypergraph) theory we are faced with the following general problem: Given a dense graph G on a large number n of vertices (with $|E(G)| \geq c\binom{n}{2}$) we have to find a special (sometimes spanning) subgraph H in G. Typical examples for H include:

- Hamiltonian cycle or path
- Powers of a Hamiltonian cycle
- Coverings by special graphs
- Spanning subtrees, etc.

The Regularity method based on the Regularity Lemma (Szemerédi) and the Blow-up Lemma (Komlós, G.S., Szemerédi) works in these situations.

Introduction

Where do we start? We have to find some structure in G, the first step is to apply the Regularity Lemma for G. Roughly this says (details later) that apart from a small exceptional set V_{0} we can partition the vertices into clusters $V_{i}, i \geq 1$ such that most of the pairs $\left(V_{i}, V_{j}\right)$ are nice, random-looking (ϵ-regular).

Introduction

Then we can "blow-up" a nice pair like this and the Blow-up Lemma claims that under some natural conditions any subgraph can be found in the pair. So roughly saying the Regularity Lemma finds the partition and then the Blow-up Lemma shows how to use this.

History of the Regularity method

- Regularity Lemma (Szemerédi '78)
- Weak hypergraph Regularity Lemma (Chung '91)
- Algorithmic version of the Regularity Lemma (Alon, Duke, Leffman, Rödl, Yuster '94)
- Blow-up Lemma (Komlós, G.S., Szemerédi '97)
- Algorithmic version of the Blow-up Lemma (Komlós, G.S., Szemerédi '98)
- Regularity method for graphs (Komlós, G.S., Szemerédi '96-...)
- Strong hypergraph Regularity Lemmas (Rödl, Nagle, Schacht, Skokan ' 04, Gowers '07, Tao '06, Elek, Szegedy '08, Ishigami '08)
- Hypergraph Blow-up Lemma (Keevash '08)
- Hypergraph Regularity method

Notation and definitions

- K_{n} is the complete graph on n vertices, $K(u, v)$ is the complete bipartite graph between U and V with $|U|=u,|V|=v$.
- $\delta(G)$ stands for the minimum, and $\Delta(G)$ for the maximum degree in G.
- When A, B are disjoint subsets of $V(G)$, we denote by $e(A, B)$ the number of edges of G with one endpoint in A and the other in B. For non-empty A and B,

$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$

is the density of the graph between A and B.

Notation and definitions

- The bipartite graph $G(A, B)$ (or simply the pair (A, B)) is called ϵ-regular if

$$
X \subset A, Y \subset B,|X|>\epsilon|A|,|Y|>\epsilon|B|
$$

imply

$$
|d(X, Y)-d(A, B)|<\epsilon,
$$

otherwise it is ϵ-irregular.

B

Notation and definitions

- (A, B) is (ϵ, δ)-super-regular if it is ϵ-regular and

$$
\operatorname{deg}(a)>\delta|B| \forall a \in A, \quad \operatorname{deg}(b)>\delta|A| \forall b \in B
$$

B

Regularity Lemma

Lemma (Regularity Lemma, Szemerédi '78)

For every $\epsilon>0$ and positive integer m there are positive integers $M=M(\epsilon, m)$ and $N=N(\epsilon, m)$ with the following property: for every graph G with at least N vertices there is a partition of the vertex set into $I+1$ classes (clusters)

$$
V=V_{0}+V_{1}+V_{2}+\ldots+V_{1}
$$

such that

- $m \leq I \leq M$
- $\quad\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{1}\right|$
- $\left|V_{0}\right|<\epsilon n$
- apart from at most $\epsilon\binom{l}{2}$ exceptional pairs, all the pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular.

Overview of the Regularity method

So we have to find a special subgraph H in a dense graph G.
STEP 1: Preparation of G.
Decompose G into clusters by using the Regularity Lemma (with a small enough ϵ). Define the so-called reduced graph G_{r} : the vertices correspond to the clusters, p_{1}, \ldots, p_{l}, and we have an edge between p_{i} and p_{j} if the pair $\left(V_{i}, V_{j}\right)$ is ϵ-regular with $d\left(V_{i}, V_{j}\right) \geq \delta$ (with some $\delta \gg \epsilon$). Then we have a one-to-one correspondence $f: p_{i} \rightarrow V_{i}$. Key observations:

- G_{r} has only a constant number of vertices.
- G_{r} "inherits" the most important properties of G (e.g. degree and density conditions).
- G_{r} is the "essence" of G.

Overview of the Regularity method

STEP 2: Find "nice" objects in G_{r}.
This depends on the particular application and degree condition. Some examples:
Matching in G_{r}

Covering by cliques in G_{r}

Overview of the Regularity method

STEP 3: Preparation of H (if necessary).
STEP 4: "Technical manipulations".

- Connect the objects in the covering.
- Remove exceptional vertices from the clusters (just a few) to achieve super-regularity.
- Add the removed vertices to V_{0}.
- Redistribute the vertices of V_{0} among the clusters in the covering.

The goal of STEP 4 is to reduce the embedding problem to embedding into the super-regular objects.

Overview of the Regularity method

STEP 5: Finishing the embedding inside the super-regular objects.

Lemma (Blow-up Lemma, Komlós, G.S., Szemerédi '97)

Given a graph R of order r and positive parameters δ, Δ, there exists an $\epsilon>0$ such that the following holds. Let N be an arbitrary positive integer, and let us replace the vertices of R with pairwise disjoint N-sets $V_{1}, V_{2}, \ldots, V_{r}$ (blowing up). We construct two graphs on the same vertex-set $V=\cup V_{i}$. The graph $R(N)$ is obtained by replacing all edges of R with copies of the complete bipartite graph $K(N, N)$, and a sparser graph G is constructed by replacing the edges of R with some (ϵ, δ)-super-regular pairs. If a graph H with $\Delta(H) \leq \Delta$ is embeddable into $R(N)$ then it is already embeddable into G.

Overview of the Regularity method

We start from the graph R :

We blow it up and we have the graphs $H, G, R(N)$ on this new vertex set:

Overview of the Regularity method

Special case (R is just an edge): In a balanced (ϵ, δ)-super-regular pair G there is a Hamiltonian path H (max degree=2).

V_{2}

Overview of the Regularity method

Remarks on the method:

- The method can be made algorithmic as both the Regularity Lemma and the Blow-up Lemma have algorithmic versions.
- The method only works for a really large $n \geq n_{0}$ (Gowers). In certain cases the method can be "de-regularized", i.e. the use of the Regularity Lemma can be avoided while maintaining some other key elements of the method. Then the resulting n_{0} is much better.
- The method can be generalized for coloring problems. For this purpose we need an r-color version of the Regularity Lemma, we need a coloring in the reduced graph, etc.
- The method can be generalized for hypergraphs since by now the Hypergraph Regularity Lemma and the Hypergraph Blow-up Lemma are both available.

Some applications of the method

Proof of the Seymour conjecture for large graphs:

Theorem (Komlós, G.S., Szemerédi '98)

For any positive integer k there is an $n_{0}=n_{0}(k)$ such that if G has order n with $n \geq n_{0}$ and $\delta(G) \geq \frac{k}{k+1} n$, then G contains the $k^{t h}$ power of a Hamiltonian cycle.

Proof of the Alon-Yuster conjecture for large graphs:

Theorem (Komlós, G.S., Szemerédi '01)

Let H be a graph with h vertices and chromatic number k. There exist constants $n_{0}(H), c(H)$ such that if $n \geq n_{0}(H)$ and G is a graph with hn vertices and minimum degree

$$
\delta(G) \geq\left(1-\frac{1}{k}\right) h n+c(H)
$$

then G contains an H-factor.

Some applications of the method

Counting Hamiltonian cycles in Dirac graphs (a question of Bondy):

Theorem (G.S., Selkow, Szemerédi '03)

There exists a constant $c>0$ such that the number of Hamiltonian cycles in Dirac graphs $(\delta(G) \geq n / 2)$ is at least $(c n)^{n}$.

This was recently improved by Cuckler and Kahn.
$R\left(G_{1}, G_{2}, \ldots, G_{r}\right)$ is the minimum n such that an arbitrary r-edge coloring of K_{n} contains a copy of G_{i} in color i for some i.
Proof of a conjecture of Faudree and Schelp for the 3-color Ramsey numbers for paths:

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi '07)

There exists an n_{0} such that

$$
R\left(P_{n}, P_{n}, P_{n}\right)=\left\{\begin{array}{l}
2 n-1 \text { for odd } n \geq n_{0} \\
2 n-2 \text { for even } n \geq n_{0}
\end{array}\right.
$$

Additional notation for hypergraphs

- $K_{n}^{(r)}$ is the complete r-uniform hypergraph on n vertices.
- If $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ is an r-uniform hypergraph and $x_{1}, \ldots, x_{r-1} \in V(\mathcal{H})$, then

$$
\operatorname{deg}\left(x_{1}, \ldots, x_{r-1}\right)=\left|\left\{e \in E(\mathcal{H}) \mid\left\{x_{1}, \ldots, x_{r-1}\right\} \subset e\right\}\right| .
$$

- Then the minimum degree in an r-uniform hypergraph \mathcal{H} :

$$
\delta(\mathcal{H})=\min _{x_{1}, \ldots, x_{r-1}} \operatorname{deg}\left(x_{1}, \ldots, x_{r-1}\right) .
$$

Loose cycles

There are several natural definitions for a hypergraph cycle. We survey these different cycle notions and some results available for them. The first one is the loose cycle. The definition is similar for $K_{n}^{(r)}$.

Definition

C_{m} is a loose cycle in $K_{n}^{(3)}$, if it has vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges

$$
\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{3}, v_{4}, v_{5}\right),\left(v_{5}, v_{6}, v_{7}\right), \ldots,\left(v_{m-1}, v_{m}, v_{1}\right)\right\}
$$

(so in particular m is even).

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)
If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.
Recently this was generalized for general r. The proof is using the new hypergraph Blow-up Lemma by Keevash.

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.
Recently this was generalized for general r. The proof is using the new hypergraph Blow-up Lemma by Keevash.

Theorem (Keevash, Kühn, Mycroft, Osthus '08)

If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2(r-1)}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.

Density Results for Loose cycles

Han and Schacht introduced a generalization of loose Hamiltonian cycles, I-Hamiltonian cycles where two consecutive edges intersect in exactly I vertices. They proved the following density result:

Theorem (Han, Schacht '08)

If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices, $I<r / 2$ and

$$
\delta(\mathcal{H}) \geq \frac{n}{2(r-l)}+\epsilon n
$$

then \mathcal{H} contains a loose I-Hamiltonian cycle.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

A sharp version was obtained recently by Skokan and Thoma. We were able to generalize the asymptotic result for general r.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

A sharp version was obtained recently by Skokan and Thoma. We were able to generalize the asymptotic result for general r.

Theorem (Gyárfás, G.S., Szemerédi EJC '08)

Every 2-coloring (of the edges) of $K_{n}^{(r)}$ with $n \geq n_{0}(r)$ contains a monochromatic loose C_{m} with $m \sim \frac{2 r-2}{2 r-1} n$.

Tight cycles

Our second cycle type is the tight cycle. The definition is similar for $K_{n}^{(r)}$.

Definition

C_{m} is a tight cycle in $K_{n}^{(3)}$, if it has vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges

$$
\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{m}, v_{1}, v_{2}\right)\right\} .
$$

Thus every set of 3 consecutive vertices along the cycle forms an edge.

Density Results for Tight cycles

Improving a result of Katona and Kierstead:
Theorem (Rödl, Ruciński, Szemerédi '06)
If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.

Density Results for Tight cycles

Improving a result of Katona and Kierstead:

Theorem (Rödl, Ruciński, Szemerédi '06)

If \mathcal{H} is a 3 -uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n,
$$

then \mathcal{H} contains a tight Hamiltonian cycle.
Recently the same authors generalized this for general r.

Density Results for Tight cycles

Improving a result of Katona and Kierstead:

Theorem (Rödl, Ruciński, Szemerédi '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.
Recently the same authors generalized this for general r.
Theorem (Rödl, Ruciński, Szemerédi '08)
If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.

Coloring Results for Tight cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Skokan '08)

For the smallest integer $N=N(m)$ for which every 2-coloring of $K_{N}^{(3)}$ contains a monochromatic tight C_{m} we have $N \sim \frac{4}{3} m$ if m is divisible by 3 , and $N \sim 2 m$ otherwise.

All the above cycle results use the hypergraph Regularity method.

Berge-cycles

Our next cycle type is the classical Berge-cycle.

Definition

$C_{m}=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}, e_{m}, v_{1}\right)$ is a Berge-cycle in $K_{n}^{(r)}$, if

- v_{1}, \ldots, v_{m} are all distinct vertices.
- e_{1}, \ldots, e_{m} are all distinct edges.
- $v_{k}, v_{k+1} \in e_{k}$ for $k=1, \ldots, m$, where $v_{m+1}=v_{1}$.

t-tight Berge-cycles

Next we introduce a new cycle definition, the t-tight Berge-cycle (name suggested by Jenő Lehel).

Definition

$C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is a t-tight Berge-cycle in $K_{n}^{(r)}$, if for each set $\left(v_{i}, v_{i+1}, \ldots, v_{i+t-1}\right)$ of t consecutive vertices along the cycle (mod $\left.m\right)$, there is an edge e_{i} containing it and these edges are all distinct.

Special cases: For $t=2$ we get ordinary Berge-cycles and for $t=r$ we get the tight cycle.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general phenomenon.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general phenomenon.

Conjecture (Dorbec, Gravier, G.S., JGT '08)

For any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

In the theorem above we have $r=3, c=t=2$.

On the $(c+t)$-conjecture

If true, the conjecture is best possible:

Theorem (Dorbec, Gravier, G.S., JGT '08)

For any fixed $2 \leq c, t \leq r$ satisfying $c+t>r+1$ and sufficiently large n, there is a coloring of the edges of $K_{n}^{(r)}$ with c colors, such that the longest monochromatic t-tight Berge-cycle has length at most $\left\lceil\frac{t(c-1) n}{t(c-1)+1}\right\rceil$.

Sketch of the proof: Let A_{1}, \ldots, A_{c-1} be disjoint vertex sets of size $\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor$.

- Color 1: r-edges NOT containing a vertex from A_{1}.
- Color 2: r-edges NOT containing a vertex from A_{2} and not in color 1,
- Color c-1: r-edges NOT containing a vertex from A_{c-1} and not in color $1, \ldots, c-2$.
- Color c: r-edges containing a vertex from each A_{i}.

On the $(c+t)$-conjecture

Now the statement is trivial for colors $1,2, \ldots, c-1$. In color c in any t-tight Berge-cycle from t consecutive vertices one has to come from $A_{1} \cup \ldots \cup A_{c-1}$, since $t>r-c+1$. So the length is at most

$$
t(c-1)\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor .
$$

On the $(c+t)$-conjecture

Sharp results on the $(c+t)$-conjecture, i.e. the conjecture is known to be true in these cases:

- $r=3, c=t=2$ (Gyárfás, Lehel, G.S., Schelp, JCTB '08)
- $r=4, c=2, t=3$ (Gyárfás, G.S., Szemerédi '08)
"Almost" sharp results on the $(c+t)$-conjecture:
- $r=4, c=3, t=2$ (Gyárfás, G.S., Szemerédi '08) Under the assumptions there is a monochromatic t-tight Berge-cycle of length at least $n-10$.

Asymptotic results on the $(c+t)$-conjecture (using the Regularity method):

- $t=2(c \leq r-1)$ (Gyárfás, G.S., Szemerédi '07) Under the assumptions there is a monochromatic t-tight Berge-cycle of length at least $(1-\epsilon) n$.

On the $(c+t)$-conjecture

Sketch of the proof for $r=4, c=2, t=3$: A 2-coloring c is given on the edges of $\mathcal{K}=K_{n}^{(4)}$. c defines a 2 -multicoloring on the complete 3-uniform shadow hypergraph \mathcal{T} by coloring a triple T with the colors of the edges of \mathcal{K} containing T. We say that $T \in \mathcal{T}$ is good in color i if T is contained in at least two edges of \mathcal{K} of color $i(i=1,2)$. Let G be the shadow graph of \mathcal{K}. Then using a result of Bollobás and Gyárfás we get:

Lemma

Every edge $x y \in E(G)$ is in at least $n-4$ good triples of the same color.
This defines a 2-multicoloring c^{*} on the shadow graph G by coloring $x y \in E(G)$ with the color of the (at least $n-4$) good triples containing $x y$. Using a well-known result about the Ramsey number of even cycles there is a monochromatic even cycle C of length $2 t$ where $t \sim n / 3$. Then the idea is to splice in the vertices in $V \backslash C$ into every second edge of C.

On the $(c+t)$-conjecture

However, in general we were able to obtain only the following weaker result, where essentially we replace the sum $c+t$ with the product $c t$.

Theorem (Dorbec, Gravier, G.S., JGT '08)

For any fixed $2 \leq c, t \leq r$ satisfying $c t+1 \leq r$ and $n \geq 2(t+1) r c^{2}$, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

On the $(c+t)$-conjecture

Assume that $c+t>r+1$, so there is no Hamiltonian cycle. What is the length of the longest cycle? An example:

Theorem (Gyárfás, G.S., '07)

Every 3-coloring of the edges of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic (2-tight) Berge-cycle C_{m} with $m \sim \frac{4}{5} n$.

Roughly this is what we get from the construction above.

References

There are two excellent surveys on the topic:

- J. Komlós and M. Simonovits, "Szemerédi's Regularity Lemma and its applications in graph theory." in Combinatorics, Paul Erdős is Eighty (D. Miklós, V.T. Sós, and T. Szőnyi, Eds.), pp. 295-352, Bolyai Society Mathematical Studies, Vol. 2, János Bolyai Mathematical Society, Budapest, 1996.
- D. Kühn, D. Osthus, "Embedding large subgraphs into dense graphs." to appear.
All of my papers can be downloaded from my homepage: http://web.cs.wpi.edu/~gsarkozy/

