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Introduction

In many problems in graph (or hypergraph) theory we are faced with the
following general problem: Given a dense graph G on a large number n of
vertices (with |E (G )| ≥ c

(

n
2

)

) we have to find a special (sometimes
spanning) subgraph H in G . Typical examples for H include:

Hamiltonian cycle or path

Powers of a Hamiltonian cycle

Coverings by special graphs

Spanning subtrees, etc.

The Regularity method based on the Regularity Lemma (Szemerédi) and
the Blow-up Lemma (Komlós, G.S., Szemerédi) works in these situations.
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Introduction

Where do we start? We have to find some structure in G , the first step is
to apply the Regularity Lemma for G . Roughly this says (details later)
that apart from a small exceptional set V0 we can partition the vertices
into clusters Vi , i ≥ 1 such that most of the pairs (Vi ,Vj) are nice,
random-looking (ǫ-regular).
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Introduction

Then we can “blow-up” a nice pair like this and the Blow-up Lemma
claims that under some natural conditions any subgraph can be found in
the pair. So roughly saying the Regularity Lemma finds the partition and
then the Blow-up Lemma shows how to use this.

V i

V
j
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History of the Regularity method

Regularity Lemma (Szemerédi ’78)

Weak hypergraph Regularity Lemma (Chung ’91)

Algorithmic version of the Regularity Lemma (Alon, Duke, Leffman,
Rödl, Yuster ’94)

Blow-up Lemma (Komlós, G.S., Szemerédi ’97)

Algorithmic version of the Blow-up Lemma (Komlós, G.S., Szemerédi
’98)

Regularity method for graphs (Komlós, G.S., Szemerédi ’96-...)

Strong hypergraph Regularity Lemmas (Rödl, Nagle, Schacht, Skokan
’ 04, Gowers ’07, Tao ’06, Elek, Szegedy ’08, Ishigami ’08)

Hypergraph Blow-up Lemma (Keevash ’08)

Hypergraph Regularity method
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Notation and definitions

Kn is the complete graph on n vertices, K (u, v) is the complete
bipartite graph between U and V with |U| = u, |V | = v .

δ(G ) stands for the minimum, and ∆(G ) for the maximum degree in
G .

When A,B are disjoint subsets of V (G ), we denote by e(A,B) the
number of edges of G with one endpoint in A and the other in B . For
non-empty A and B ,

d(A,B) =
e(A,B)

|A||B |

is the density of the graph between A and B .
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Notation and definitions

The bipartite graph G (A,B) (or simply the pair (A,B)) is called
ǫ-regular if

X ⊂ A, Y ⊂ B , |X | > ǫ|A|, |Y | > ǫ|B |

imply
|d(X ,Y ) − d(A,B)| < ǫ,

otherwise it is ǫ-irregular.

A

B

X

Y
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Notation and definitions

(A,B) is (ǫ, δ)-super-regular if it is ǫ-regular and

deg(a) > δ|B | ∀ a ∈ A, deg(b) > δ|A| ∀ b ∈ B .
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Regularity Lemma

Lemma (Regularity Lemma, Szemerédi ’78)

For every ǫ > 0 and positive integer m there are positive integers
M = M(ǫ,m) and N = N(ǫ,m) with the following property: for every
graph G with at least N vertices there is a partition of the vertex set into
l + 1 classes (clusters)

V = V0 + V1 + V2 + . . . + Vl

such that

m ≤ l ≤ M

|V1| = |V2| = . . . = |Vl |

|V0| < ǫn

apart from at most ǫ
(

l
2

)

exceptional pairs, all the pairs (Vi ,Vj) are
ǫ-regular.
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Overview of the Regularity method

So we have to find a special subgraph H in a dense graph G .
STEP 1: Preparation of G .
Decompose G into clusters by using the Regularity Lemma (with a small
enough ǫ). Define the so-called reduced graph Gr : the vertices correspond
to the clusters, p1, . . . , pl , and we have an edge between pi and pj if the
pair (Vi ,Vj) is ǫ-regular with d(Vi ,Vj) ≥ δ (with some δ ≫ ǫ). Then we
have a one-to-one correspondence f : pi → Vi . Key observations:

Gr has only a constant number of vertices.

Gr “inherits” the most important properties of G (e.g. degree and
density conditions).

Gr is the “essence” of G .
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Overview of the Regularity method

STEP 2: Find “nice” objects in Gr .
This depends on the particular application and degree condition. Some
examples:
Matching in Gr
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Covering by cliques in Gr
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Overview of the Regularity method

STEP 3: Preparation of H (if necessary).
STEP 4: “Technical manipulations”.

Connect the objects in the covering.

Remove exceptional vertices from the clusters (just a few) to achieve
super-regularity.

Add the removed vertices to V0.

Redistribute the vertices of V0 among the clusters in the covering.

The goal of STEP 4 is to reduce the embedding problem to embedding
into the super-regular objects.
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Overview of the Regularity method

STEP 5: Finishing the embedding inside the super-regular objects.

Lemma (Blow-up Lemma, Komlós, G.S., Szemerédi ’97)

Given a graph R of order r and positive parameters δ,∆, there exists an
ǫ > 0 such that the following holds. Let N be an arbitrary positive integer,
and let us replace the vertices of R with pairwise disjoint N-sets
V1,V2, . . . ,Vr (blowing up). We construct two graphs on the same
vertex-set V = ∪Vi . The graph R(N) is obtained by replacing all edges of
R with copies of the complete bipartite graph K (N,N), and a sparser
graph G is constructed by replacing the edges of R with some
(ǫ, δ)-super-regular pairs. If a graph H with ∆(H) ≤ ∆ is embeddable into
R(N) then it is already embeddable into G .
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Overview of the Regularity method

We start from the graph R :

�� ��
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R

We blow it up and we have the graphs H,G ,R(N) on this new vertex set:

H, G, R(N)
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Overview of the Regularity method

Special case (R is just an edge): In a balanced (ǫ, δ)-super-regular pair G
there is a Hamiltonian path H (max degree=2).

V

V

1

2
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Overview of the Regularity method

Remarks on the method:

The method can be made algorithmic as both the Regularity Lemma
and the Blow-up Lemma have algorithmic versions.

The method only works for a really large n ≥ n0 (Gowers). In certain
cases the method can be “de-regularized”, i.e. the use of the
Regularity Lemma can be avoided while maintaining some other key
elements of the method. Then the resulting n0 is much better.

The method can be generalized for coloring problems. For this
purpose we need an r -color version of the Regularity Lemma, we need
a coloring in the reduced graph, etc.

The method can be generalized for hypergraphs since by now the
Hypergraph Regularity Lemma and the Hypergraph Blow-up Lemma
are both available.
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Some applications of the method

Proof of the Seymour conjecture for large graphs:

Theorem (Komlós, G.S., Szemerédi ’98)

For any positive integer k there is an n0 = n0(k) such that if G has order
n with n ≥ n0 and δ(G ) ≥ k

k+1n, then G contains the kth power of a
Hamiltonian cycle.

Proof of the Alon-Yuster conjecture for large graphs:

Theorem (Komlós, G.S., Szemerédi ’01)

Let H be a graph with h vertices and chromatic number k. There exist
constants n0(H), c(H) such that if n ≥ n0(H) and G is a graph with hn
vertices and minimum degree

δ(G ) ≥

(

1 −
1

k

)

hn + c(H),

then G contains an H-factor.
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Some applications of the method

Counting Hamiltonian cycles in Dirac graphs (a question of Bondy):

Theorem (G.S., Selkow, Szemerédi ’03)

There exists a constant c > 0 such that the number of Hamiltonian cycles
in Dirac graphs (δ(G ) ≥ n/2) is at least (cn)n.

This was recently improved by Cuckler and Kahn.
R(G1,G2, . . . ,Gr ) is the minimum n such that an arbitrary r -edge coloring
of Kn contains a copy of Gi in color i for some i .
Proof of a conjecture of Faudree and Schelp for the 3-color Ramsey
numbers for paths:

Theorem (Gyárfás, Ruszinkó, G.S., Szemerédi ’07)

There exists an n0 such that

R(Pn,Pn,Pn) =

{

2n − 1 for odd n ≥ n0,
2n − 2 for even n ≥ n0.
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Additional notation for hypergraphs

K
(r)
n is the complete r -uniform hypergraph on n vertices.

If H = (V (H),E (H)) is an r-uniform hypergraph and
x1, . . . , xr−1 ∈ V (H), then

deg(x1, . . . , xr−1) = |{e ∈ E (H) | {x1, . . . , xr−1} ⊂ e}| .

Then the minimum degree in an r -uniform hypergraph H:

δ(H) = min
x1,...,xr−1

deg(x1, . . . , xr−1).
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Loose cycles

There are several natural definitions for a hypergraph cycle. We survey
these different cycle notions and some results available for them. The first

one is the loose cycle. The definition is similar for K
(r)
n .

Definition

Cm is a loose cycle in K
(3)
n , if it has vertices {v1, . . . , vm} and edges

{(v1, v2, v3), (v3, v4, v5), (v5, v6, v7), . . . , (vm−1, vm, v1)}

(so in particular m is even).
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Density Results for Loose cycles

Theorem (Kühn, Osthus ’06)

If H is a 3-uniform hypergraph with n ≥ n0 vertices and

δ(H) ≥
n

4
+ ǫn,

then H contains a loose Hamiltonian cycle.
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Density Results for Loose cycles

Theorem (Kühn, Osthus ’06)

If H is a 3-uniform hypergraph with n ≥ n0 vertices and

δ(H) ≥
n

4
+ ǫn,

then H contains a loose Hamiltonian cycle.

Recently this was generalized for general r . The proof is using the new
hypergraph Blow-up Lemma by Keevash.
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Density Results for Loose cycles

Theorem (Kühn, Osthus ’06)

If H is a 3-uniform hypergraph with n ≥ n0 vertices and

δ(H) ≥
n

4
+ ǫn,

then H contains a loose Hamiltonian cycle.

Recently this was generalized for general r . The proof is using the new
hypergraph Blow-up Lemma by Keevash.

Theorem (Keevash, Kühn, Mycroft, Osthus ’08)

If H is an r-uniform hypergraph with n ≥ n0(r) vertices and

δ(H) ≥
n

2(r − 1)
+ ǫn,

then H contains a loose Hamiltonian cycle.
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Density Results for Loose cycles

Han and Schacht introduced a generalization of loose Hamiltonian cycles,
l -Hamiltonian cycles where two consecutive edges intersect in exactly l
vertices. They proved the following density result:

Theorem (Han, Schacht ’08)

If H is an r-uniform hypergraph with n ≥ n0(r) vertices, l < r/2 and

δ(H) ≥
n

2(r − l)
+ ǫn,

then H contains a loose l -Hamiltonian cycle.
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Coloring Results for Loose cycles

Theorem (Haxell,  Luczak, Peng, Rödl, Ruciński, Simonovits, Skokan
’06)

Every 2-coloring (of the edges) of K
(3)
n with n ≥ n0 contains a

monochromatic loose Cm with m ∼ 4
5n.
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Coloring Results for Loose cycles

Theorem (Haxell,  Luczak, Peng, Rödl, Ruciński, Simonovits, Skokan
’06)

Every 2-coloring (of the edges) of K
(3)
n with n ≥ n0 contains a

monochromatic loose Cm with m ∼ 4
5n.

A sharp version was obtained recently by Skokan and Thoma.
We were able to generalize the asymptotic result for general r .
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Coloring Results for Loose cycles

Theorem (Haxell,  Luczak, Peng, Rödl, Ruciński, Simonovits, Skokan
’06)

Every 2-coloring (of the edges) of K
(3)
n with n ≥ n0 contains a

monochromatic loose Cm with m ∼ 4
5n.

A sharp version was obtained recently by Skokan and Thoma.
We were able to generalize the asymptotic result for general r .

Theorem (Gyárfás, G.S., Szemerédi EJC ’08)

Every 2-coloring (of the edges) of K
(r)
n with n ≥ n0(r) contains a

monochromatic loose Cm with m ∼ 2r−2
2r−1n.
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Tight cycles

Our second cycle type is the tight cycle. The definition is similar for K
(r)
n .

Definition

Cm is a tight cycle in K
(3)
n , if it has vertices {v1, . . . , vm} and edges

{(v1, v2, v3), (v2, v3, v4), (v3, v4, v5), . . . , (vm, v1, v2)}.

Thus every set of 3 consecutive vertices along the cycle forms an edge.
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Density Results for Tight cycles

Improving a result of Katona and Kierstead:

Theorem (Rödl, Ruciński, Szemerédi ’06)

If H is a 3-uniform hypergraph with n ≥ n0 vertices and

δ(H) ≥
n

2
+ ǫn,

then H contains a tight Hamiltonian cycle.
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Coloring Results for Tight cycles

Theorem (Haxell,  Luczak, Peng, Rödl, Ruciński, Skokan ’08)

For the smallest integer N = N(m) for which every 2-coloring of K
(3)
N

contains a monochromatic tight Cm we have N ∼ 4
3m if m is divisible by

3, and N ∼ 2m otherwise.

All the above cycle results use the hypergraph Regularity method.
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Berge-cycles

Our next cycle type is the classical Berge-cycle.

Definition

Cm = (v1, e1, v2, e2, . . . , vm, em, v1) is a Berge-cycle in K
(r)
n , if

v1, . . . , vm are all distinct vertices.

e1, . . . , em are all distinct edges.

vk , vk+1 ∈ ek for k = 1, . . . ,m, where vm+1 = v1.
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t-tight Berge-cycles

Next we introduce a new cycle definition, the t-tight Berge-cycle (name
suggested by Jenő Lehel).

Definition

Cm = (v1, v2, . . . , vm) is a t-tight Berge-cycle in K
(r)
n , if for each set

(vi , vi+1, . . . , vi+t−1) of t consecutive vertices along the cycle (mod m),
there is an edge ei containing it and these edges are all distinct.

Special cases: For t = 2 we get ordinary Berge-cycles and for t = r we get
the tight cycle.
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Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB ’08)

Every 2-coloring of K
(3)
n with n ≥ 5 contains a monochromatic

Hamiltonian (2-tight) Berge-cycle.
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Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB ’08)

Every 2-coloring of K
(3)
n with n ≥ 5 contains a monochromatic

Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general
phenomenon.
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Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB ’08)

Every 2-coloring of K
(3)
n with n ≥ 5 contains a monochromatic

Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general
phenomenon.

Conjecture (Dorbec, Gravier, G.S., JGT ’08)

For any fixed 2 ≤ c , t ≤ r satisfying c + t ≤ r + 1 and sufficiently large n,

if we color the edges of K
(r)
n with c colors, then there is a monochromatic

Hamiltonian t-tight Berge-cycle.

In the theorem above we have r = 3, c = t = 2.
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On the (c + t)-conjecture

If true, the conjecture is best possible:

Theorem (Dorbec, Gravier, G.S., JGT ’08)

For any fixed 2 ≤ c , t ≤ r satisfying c + t > r + 1 and sufficiently large n,

there is a coloring of the edges of K
(r)
n with c colors, such that the longest

monochromatic t-tight Berge-cycle has length at most ⌈ t(c−1)n
t(c−1)+1⌉.

Sketch of the proof: Let A1, . . . ,Ac−1 be disjoint vertex sets of size
⌊ n

t(c−1)+1 ⌋.

Color 1: r -edges NOT containing a vertex from A1.

Color 2: r -edges NOT containing a vertex from A2 and not in color 1,
...

Color c-1: r -edges NOT containing a vertex from Ac−1 and not in
color 1, . . . , c − 2.

Color c: r -edges containing a vertex from each Ai .
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On the (c + t)-conjecture

Now the statement is trivial for colors 1, 2, . . . , c − 1. In color c in any
t-tight Berge-cycle from t consecutive vertices one has to come from
A1 ∪ . . . ∪ Ac−1, since t > r − c + 1. So the length is at most

t(c − 1)⌊
n

t(c − 1) + 1
⌋.
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On the (c + t)-conjecture

Sharp results on the (c + t)-conjecture, i.e. the conjecture is known to be
true in these cases:

r = 3, c = t = 2 (Gyárfás, Lehel, G.S., Schelp, JCTB ’08)

r = 4, c = 2, t = 3 (Gyárfás, G.S., Szemerédi ’08)

“Almost” sharp results on the (c + t)-conjecture:

r = 4, c = 3, t = 2 (Gyárfás, G.S., Szemerédi ’08) Under the
assumptions there is a monochromatic t-tight Berge-cycle of length
at least n − 10.

Asymptotic results on the (c + t)-conjecture (using the Regularity
method):

t = 2 (c ≤ r − 1) (Gyárfás, G.S., Szemerédi ’07) Under the
assumptions there is a monochromatic t-tight Berge-cycle of length
at least (1 − ǫ)n.
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On the (c + t)-conjecture

Sketch of the proof for r = 4, c = 2, t = 3: A 2-coloring c is given on

the edges of K = K
(4)
n . c defines a 2-multicoloring on the complete

3-uniform shadow hypergraph T by coloring a triple T with the colors of
the edges of K containing T . We say that T ∈ T is good in color i if T is
contained in at least two edges of K of color i (i = 1, 2). Let G be the
shadow graph of K. Then using a result of Bollobás and Gyárfás we get:

Lemma

Every edge xy ∈ E (G ) is in at least n − 4 good triples of the same color.

This defines a 2-multicoloring c∗ on the shadow graph G by coloring
xy ∈ E (G ) with the color of the (at least n − 4) good triples containing
xy . Using a well-known result about the Ramsey number of even cycles
there is a monochromatic even cycle C of length 2t where t ∼ n/3. Then
the idea is to splice in the vertices in V \ C into every second edge of C .
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On the (c + t)-conjecture

However, in general we were able to obtain only the following weaker
result, where essentially we replace the sum c + t with the product ct.

Theorem (Dorbec, Gravier, G.S., JGT ’08)

For any fixed 2 ≤ c , t ≤ r satisfying ct + 1 ≤ r and n ≥ 2(t + 1)rc2, if we

color the edges of K
(r)
n with c colors, then there is a monochromatic

Hamiltonian t-tight Berge-cycle.
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On the (c + t)-conjecture

Assume that c + t > r + 1, so there is no Hamiltonian cycle. What is the
length of the longest cycle? An example:

Theorem (Gyárfás, G.S., ’07)

Every 3-coloring of the edges of K
(3)
n with n ≥ n0 contains a

monochromatic (2-tight) Berge-cycle Cm with m ∼ 4
5n.

Roughly this is what we get from the construction above.
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