Cycles in Hypergraphs

Gábor N. Sárközy

${ }^{1}$ Worcester Polytechnic Institute
USA
${ }^{2}$ Computer and Automation Research Institute of the Hungarian Academy of Sciences

Budapest, Hungary

Co-authors: P. Dorbec, S. Gravier, A. Gyárfás, J. Lehel, R. Schelp and E. Szemerédi
August 13, 2008

Outline of Topics

(1) Notation
(2) Loose cycles
(3) Tight cycles

4 Berge-cycles
(5) t-tight Berge-cycles
(6) On the $(c+t)$-conjecture

Notation

- $K_{n}^{(r)}$ is the complete r-uniform hypergraph on n vertices.
- If $\mathcal{H}=(V(\mathcal{H}), E(\mathcal{H}))$ is an r-uniform hypergraph and $x_{1}, \ldots, x_{r-1} \in V(\mathcal{H})$, then

$$
\operatorname{deg}\left(x_{1}, \ldots, x_{r-1}\right)=\left|\left\{e \in E(\mathcal{H}) \mid\left\{x_{1}, \ldots, x_{r-1}\right\} \subset e\right\}\right| .
$$

- Then the minimum degree in an r-uniform hypergraph \mathcal{H} :

$$
\delta(\mathcal{H})=\min _{x_{1}, \ldots, x_{r-1}} \operatorname{deg}\left(x_{1}, \ldots, x_{r-1}\right) .
$$

Loose cycles

There are several natural definitions for a hypergraph cycle. We survey these different cycle notions and some results available for them. The first one is the loose cycle. The definition is similar for $K_{n}^{(r)}$.

Definition

C_{m} is a loose cycle in $K_{n}^{(3)}$, if it has vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges

$$
\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{3}, v_{4}, v_{5}\right),\left(v_{5}, v_{6}, v_{7}\right), \ldots,\left(v_{m-1}, v_{m}, v_{1}\right)\right\}
$$

(so in particular m is even).

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)
If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.
Recently this was generalized for general r (presented at this conference). The proof is using the new hypergraph Blow-up Lemma by Keevash.

Density Results for Loose cycles

Theorem (Kühn, Osthus '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{4}+\epsilon n,
$$

then \mathcal{H} contains a loose Hamiltonian cycle.
Recently this was generalized for general r (presented at this conference). The proof is using the new hypergraph Blow-up Lemma by Keevash.

Theorem (Keevash, Kühn, Mycroft, Osthus '08)

If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2(r-1)}+\epsilon n
$$

then \mathcal{H} contains a loose Hamiltonian cycle.

Density Results for Loose cycles

Han and Schacht introduced a generalization of loose Hamiltonian cycles, I-Hamiltonian cycles where two consecutive edges intersect in exactly I vertices. They proved the following density result (also presented at this conference):

Theorem (Han, Schacht '08)

If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices, $I<r / 2$ and

$$
\delta(\mathcal{H}) \geq \frac{n}{2(r-l)}+\epsilon n
$$

then \mathcal{H} contains a loose I-Hamiltonian cycle.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

A sharp version was obtained recently by Skokan and Thoma (presented at this conference).
We were able to generalize the asymptotic result for general r.

Coloring Results for Loose cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, Skokan '06)

Every 2-coloring (of the edges) of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic loose C_{m} with $m \sim \frac{4}{5} n$.

A sharp version was obtained recently by Skokan and Thoma (presented at this conference).
We were able to generalize the asymptotic result for general r.

Theorem (Gyárfás, G.S., Szemerédi '07)

Every 2-coloring (of the edges) of $K_{n}^{(r)}$ with $n \geq n_{0}(r)$ contains a monochromatic loose C_{m} with $m \sim \frac{2 r-2}{2 r-1} n$.

Tight cycles

Our second cycle type is the tight cycle. The definition is similar for $K_{n}^{(r)}$.

Definition

C_{m} is a tight cycle in $K_{n}^{(3)}$, if it has vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges

$$
\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{2}, v_{3}, v_{4}\right),\left(v_{3}, v_{4}, v_{5}\right), \ldots,\left(v_{m}, v_{1}, v_{2}\right)\right\} .
$$

Thus every set of 3 consecutive vertices along the cycle forms an edge.

Density Results for Tight cycles

Theorem (Rödl, Ruciński, Szemerédi '06)

If \mathcal{H} is a 3-uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n,
$$

then \mathcal{H} contains a tight Hamiltonian cycle.

Density Results for Tight cycles

Theorem (Rödl, Ruciński, Szemerédi '06)

If \mathcal{H} is a 3 -uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.
Recently the same authors generalized this for general r.

Density Results for Tight cycles

Theorem (Rödl, Ruciński, Szemerédi '06)

If \mathcal{H} is a 3 -uniform hypergraph with $n \geq n_{0}$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.
Recently the same authors generalized this for general r.

Theorem (Rödl, Ruciński, Szemerédi '08)

If \mathcal{H} is an r-uniform hypergraph with $n \geq n_{0}(r)$ vertices and

$$
\delta(\mathcal{H}) \geq \frac{n}{2}+\epsilon n
$$

then \mathcal{H} contains a tight Hamiltonian cycle.

Coloring Results for Tight cycles

Theorem (Haxell, Łuczak, Peng, Rödl, Ruciński, Skokan '08)

For the smallest integer $N=N(m)$ for which every 2-coloring of $K_{N}^{(3)}$ contains a monochromatic tight C_{m} we have $N \sim \frac{4}{3} m$ if m is divisible by 3 , and $N \sim 2 m$ otherwise.

All the above results use various forms of the Hypergraph Regularity Lemma.

Berge-cycles

Our next cycle type is the classical Berge-cycle.

Definition

$C_{m}=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}, e_{m}, v_{1}\right)$ is a Berge-cycle in $K_{n}^{(r)}$, if

- v_{1}, \ldots, v_{m} are all distinct vertices.
- e_{1}, \ldots, e_{m} are all distinct edges.
- $v_{k}, v_{k+1} \in e_{k}$ for $k=1, \ldots, m$, where $v_{m+1}=v_{1}$.

t-tight Berge-cycles

Next we introduce a new cycle definition, the t-tight Berge-cycle (name suggested by Jenő Lehel).

Definition

$C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is a t-tight Berge-cycle in $K_{n}^{(r)}$, if for each set $\left(v_{i}, v_{i+1}, \ldots, v_{i+t-1}\right)$ of t consecutive vertices along the cycle (mod $\left.m\right)$, there is an edge e_{i} containing it and these edges are all distinct.

Special cases: For $t=2$ we get ordinary Berge-cycles and for $t=r$ we get the tight cycle.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general phenomenon.

Coloring Results for t-Tight Berge-cycles

Theorem (Gyárfás, Lehel, G.S., Schelp, JCTB '08)

Every 2-coloring of $K_{n}^{(3)}$ with $n \geq 5$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle.

We conjecture that this is a very special case of the following more general phenomenon.

Conjecture

For any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

In the theorem above we have $r=3, c=t=2$.

On the $(c+t)$-conjecture

If true, the conjecture is best possible:

Theorem (Dorbec, Gravier, G.S., JGT '08)

For any fixed $2 \leq c, t \leq r$ satisfying $c+t>r+1$ and sufficiently large n, there is a coloring of the edges of $K_{n}^{(r)}$ with c colors, such that the longest monochromatic t-tight Berge-cycle has length at most $\left\lceil\frac{t(c-1) n}{t(c-1)+1}\right\rceil$.

Sketch of the proof: Let A_{1}, \ldots, A_{c-1} be disjoint vertex sets of size $\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor$.

- Color 1: r-edges NOT containing a vertex from A_{1}.
- Color 2: r-edges NOT containing a vertex from A_{2} and not in color 1,
- Color c-1: r-edges NOT containing a vertex from A_{c-1} and not in color $1, \ldots, c-2$.
- Color c: r-edges containing a vertex from each A_{i}.

On the $(c+t)$-conjecture

Now the statement is trivial for colors $1,2, \ldots, c-1$. In color c in any t-tight Berge-cycle from t consecutive vertices one has to come from $A_{1} \cup \ldots \cup A_{c-1}$, since $t>r-c+1$. So the length is at most

$$
t(c-1)\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor .
$$

On the $(c+t)$-conjecture

Sharp results on the $(c+t)$-conjecture, i.e. the conjecture is known to be true in these cases:

- $r=3, c=t=2$ (Gyárfás, Lehel, G.S., Schelp, JCTB '08)
- $r=4, c=2, t=3$ (Gyárfás, G.S., Szemerédi '08)
"Almost" sharp results on the $(c+t)$-conjecture:
- $r=4, c=3, t=2$ (Gyárfás, G.S., Szemerédi '08) Under the assumptions there is a monochromatic t-tight Berge-cycle of length at least $n-10$.
Asymptotic results on the $(c+t)$-conjecture:
- $t=2(c \leq r-1)$ (Gyárfás, G.S., Szemerédi '07) Under the assumptions there is a monochromatic t-tight Berge-cycle of length at least $(1-\epsilon) n$.

On the $(c+t)$-conjecture

Sketch of the proof for $r=4, c=2, t=3$: A 2-coloring c is given on the edges of $\mathcal{K}=K_{n}^{(4)}$. c defines a 2 -multicoloring on the complete 3-uniform shadow hypergraph \mathcal{T} by coloring a triple T with the colors of the edges of \mathcal{K} containing T. We say that $T \in \mathcal{T}$ is good in color i if T is contained in at least two edges of \mathcal{K} of color $i(i=1,2)$. Let G be the shadow graph of \mathcal{K}. Then using a result of Bollobás and Gyárfás we get:

Lemma

Every edge $x y \in E(G)$ is in at least $n-4$ good triples of the same color.
This defines a 2-multicoloring c^{*} on the shadow graph G by coloring $x y \in E(G)$ with the color of the (at least $n-4$) good triples containing $x y$. Using a well-known result about the Ramsey number of even cycles there is a monochromatic even cycle C of length $2 t$ where $t \sim n / 3$. Then the idea is to splice in the vertices in $V \backslash C$ into every second edge of C.

On the $(c+t)$-conjecture

However, in general we were able to obtain only the following weaker result, where essentially we replace the sum $c+t$ with the product $c t$.

Theorem (Dorbec, Gravier, G.S., JGT '08)

For any fixed $2 \leq c, t \leq r$ satisfying $c t+1 \leq r$ and $n \geq 2(t+1) r c^{2}$, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

On the $(c+t)$-conjecture

Assume that $c+t>r+1$, so there is no Hamiltonian cycle. What is the length of the longest cycle? An example:

Theorem (Gyárfás, G.S., '07)

Every 3-coloring of the edges of $K_{n}^{(3)}$ with $n \geq n_{0}$ contains a monochromatic (2-tight) Berge-cycle C_{m} with $m \sim \frac{4}{5} n$.

Roughly this is what we get from the construction above.

All the papers can be downloaded from my homepage: http://web.cs.wpi.edu/~gsarkozy/

